ﻻ يوجد ملخص باللغة العربية
IEEE 802.15.4 supports a Guaranteed Time Slot (GTS) allocation mechanism for time-critical and delay-sensitive data transmissions in Wireless Personal Area Networks (WPANs). However, the inflexible first-come-first-served GTS allocation policy and the passive deallocation mechanism significantly reduce network efficiency. In this paper, we propose an Adaptive and Real-Time GTS Allocation Scheme (ART-GAS) to provide differentiated services for devices with different priorities, which guarantees data transmissions for time-sensitive and high-traffic devices. The bandwidth utilization in IEEE 802.15.4-based PAN is improved. Simulation results show that our ART-GAS algorithm significantly outperforms the existing GTS mechanism specified in IEEE 802.15.4.
Support of real-time applications that impose strict requirements on packet loss ratio and latency is an essential feature of the next generation Wi-Fi networks. Initially introduced in the 802.11ax amendment to the Wi-Fi standard, uplink OFDMA seems
Next generation Wi-Fi networks are expected to support real-time applications that impose strict requirements on the packet transmission delay and packet loss ratio. Such applications form an essential target for the future Wi-Fi standard, namely IEE
For data collection scenarios in the Industrial Internet of Things, wireless communication provides a cost-effective and easy-to-deploy alternative to wired networks. The main focus lies on energy efficiency and reliability, as many devices are batte
In 2015, the IEEE 802.15.4 standard was expanded by the Deterministic and Synchronous Multi-Channel Extension (DSME) to increase reliability, scalability and energy-efficiency in industrial applications. The extension offers a TDMA/FDMA-based channel
In 2019 IEEE 802 LAN/MAN Standards Committee started the development of the next major amendment of the Wi-Fi standard: the IEEE 802.11be, also known as Wi-Fi 7. This new amendment will introduce many new functions and will improve the existing ones