ترغب بنشر مسار تعليمي؟ اضغط هنا

OFDMA Resource Allocation for Real-Time Applications in IEEE 802.11ax Networks

116   0   0.0 ( 0 )
 نشر من قبل Dmitry Bankov
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Support of real-time applications that impose strict requirements on packet loss ratio and latency is an essential feature of the next generation Wi-Fi networks. Initially introduced in the 802.11ax amendment to the Wi-Fi standard, uplink OFDMA seems to be a promising solution for supported low-latency data transmission from the numerous stations to an access point. In this paper, we study how to allocate OFDMA resources in an 802.11ax network and propose an algorithm aimed at providing the delay less than one millisecond and reliability up to 99.999% as required by numerous real-time applications. We design a resource allocation algorithm and with extensive simulation, show that it decreases delays for real-time traffic by orders of magnitude, while the throughput for non-real-time traffic is reduced insignificantly.

قيم البحث

اقرأ أيضاً

We consider the scheduling and resource allocation problem in AP-initiated uplink OFDMA transmissions of IEEE 802.11ax networks. The uplink OFDMA resource allocation problem is known to be non-convex and difficult to solve in general. However, due to the special subcarrier allocation model of IEEE 802.11ax, the utility maximization problem involving the instantaneous rates of stations can be formulated as an assignment problem, and hence can be solved using the Hungarian method. In this paper, we address the more general problem of stochastic network utility maximization. Specifically, we maximize the utility of long-term average rates of stations subject to average rate and power constraints using Lyapunov optimization. The resulting resource allocation policies perform arbitrarily close to optimal and have polynomial time complexity. An important advantage of the proposed framework is that it can be used along with the target wake time mechanism of IEEE 802.11ax to provide guarantees on the average power consumption and/or achievable rates of stations whenever possible. Two key applications of such a design approach are power-constrained IoT networks and battery-powered sensor networks. We complement the theoretical study with computer simulations that evaluate our approach against other existing methods.
In order to meet the ever-increasing demand for high throughput in WiFi networks, the IEEE 802.11ax (11ax) standard introduces orthogonal frequency division multiple access (OFDMA). In this letter, we address the station-resource unit scheduling prob lem in downlink OFDMA of 11ax subject to minimum throughput requirements. To deal with the infeasible instances of the constrained problem, we propose a novel scheduling policy based on weighted max-min fairness, which maximizes the minimum fraction between the achievable and minimum required throughputs. Thus, the proposed policy has a well-defined behavior even when the throughput constraints cannot be fulfilled. Numerical results showcase the merits of our approach over the popular proportional fairness and constrained sum-rate maximization strategies.
Next generation Wi-Fi networks are expected to support real-time applications that impose strict requirements on the packet transmission delay and packet loss ratio. Such applications form an essential target for the future Wi-Fi standard, namely IEE E 802.11be, the development process of which started in 2019. A promising way to provide efficient real-time communications in 802.11be networks requires some modification of the uplink OFDMA feature originally introduced in the IEEE 802.11ax amendment to the Wi-Fi standard. This feature allows the access point to reserve channel resources for upcoming urgent transmissions. The paper explains why uplink OFDMA random access of 802.11ax does not perfectly fit the requirements of real-time applications and proposes an easy-to-implement modification of the channel access rules for future 802.11be networks. With extensive simulation, it is shown that this modification together with a new resource allocation algorithm outperforms the existing ways to support real-time applications, especially for a heavy load and a high number of users. In particular, they provide extremely low delays for real-time traffic, while the throughput for non-real-time traffic is reduced insignificantly.
In 2019 IEEE 802 LAN/MAN Standards Committee started the development of the next major amendment of the Wi-Fi standard: the IEEE 802.11be, also known as Wi-Fi 7. This new amendment will introduce many new functions and will improve the existing ones that will make Wi-Fi more efficient in many new scenarios. One of the scenarios is the service of Real-Time Applications with strict requirements on latency and reliability of communications. Providing low latencies can be challenging in Wi-Fi because of the unlicensed spectrum and related interference from neighboring devices. In this paper, we consider the usage of OFDMA transmissions for Real-Time Applications and design resource allocation algorithms that can provide the required latency and reliability in the presence of interference.
The recently created IETF 6TiSCH working group combines the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping with IPv6 for industrial Internet of Things. We propose a distributed link scheduling algorithm, ca lled Local Voting, for 6TiSCH networks that adapts the schedule to the network conditions. The algorithm tries to equalize the link load (defined as the ratio of the queue length over the number of allocated cells) through cell reallocation. Local Voting calculates the number of cells to be added or released by the 6TiSCH Operation Sublayer (6top). Compared to a representative algorithm from the literature, Local Voting provides simultaneously high reliability and low end-to-end latency while consuming significantly less energy. Its performance has been examined and compared to On-the-fly algorithm in 6TiSCH simulator by modeling an industrial environment with 50 sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا