ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental characterization of photonic fusion using fiber sources

81   0   0.0 ( 0 )
 نشر من قبل Bryn Bell
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the fusion of photons from two independent photonic crystal fiber sources into polarization entangled states using a fiber-based polarizing beam splitter. We achieve fidelities of up to F = 0.74 $pm$ 0.01 with respect to the maximally entangled Bell state phi+ using a low pump power of 5.3mW with a success rate of 3.2 four-fold detections per second. By increasing the pump power we find that success rates of up to 111.6 four-folds per second can be achieved, with entanglement still present in the fused state. We characterize the fusion operation by providing a full quantum process reconstruction. Here a model is developed to describe the generation of entanglement, including the main causes of imperfection, and we show that this model fits well with the experimental results. Our work shows how non-ideal settings limit the success of the fusion, providing useful information about the practical requirements for an operation that may be used to build large entangled states in bulk and on-chip quantum photonic waveguides.

قيم البحث

اقرأ أيضاً

Scalable technologies to characterize the performance of quantum devices are crucial to creating large quantum networks and quantum processing units. Chief among the resources of quantum information processing is entanglement. Here we describe the fu ll temporal and spatial characterization of polarization-entangled photons produced by Spontaneous Parametric Down
The accurate and reliable description of measurement devices is a central problem in both observing uniquely non-classical behaviors and realizing quantum technologies from powerful computing to precision metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However, such a characterization relies on accurately characterized probe states, rendering reliability of the characterization lost in circular argument. Here we report a self-characterization method of quantum measurements based on reconstructing the response range, the entirety of attainable measurement outcomes, eliminating the reliance on known states. We characterize two representative measurements implemented with photonic setups and obtain fidelities above 99.99% with the conventional tomographic reconstructions. This initiates range-based techniques in characterizing quantum systems and foreshadows novel device-independent protocols of quantum information applications.
Quantum Key Distribution (QKD) provides an efficient means to exchange information in an unconditionally secure way. Historically, QKD protocols have been based on binary signal formats, such as two polarisation states, and the transmitted informatio n efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional QKD protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional QKD protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable means. Our demonstration pave the way to utilize state-of-the-art multicore fibers for long distance high-dimensional QKD, and boost silicon photonics for high information efficiency quantum communications.
We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarizatio n noise in the paths of the generated photons we prepare mixed entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.
Both photonic quantum computation and the establishment of a quantum internet require fiber-based measurement and feed-forward in order to be compatible with existing infrastructure. Here we present a fiber-compatible scheme for measurement and feed- forward, whose performance is benchmarked by carrying out remote preparation of single-photon polarization states at telecom-wavelengths. The result of a projective measurement on one photon deterministically controls the path a second photon takes with ultrafast optical switches. By placing well-calibrated {bulk} passive polarization optics in the paths, we achieve a measurement and feed-forward fidelity of (99.0 $pm$ 1)%, after correcting for other experimental errors. Our methods are useful for photonic quantum experiments including computing, communication, and teleportation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا