ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological evolution in R^2 gravity

157   0   0.0 ( 0 )
 نشر من قبل Lorenzo Reverberi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Universe evolution during the radiation-dominated epoch in the R^2-extended gravity theory is considered. The equations of motion for R and H are solved analytically and numerically. The particle production rate by the oscillating curvature is calculated in one-loop approximation and the back reaction of particle production on the evolution of R is taken into account. Possible implications of the model for cosmological creation of non-thermal dark matter is discussed.



قيم البحث

اقرأ أيضاً

136 - Diego Saez-Gomez 2012
One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level , where the late-time accelerating era is reproduced, and even the inflationary phase. In the present work, the future cosmological evolution for one of these models is studied. A transition to the phantom phase is observed. Furthermore, the scalar-tensor equivalence of f(R) gravity is also considered, which provides important information concerning this kind of models.
172 - K. Bamba 2013
A generic feature of viable exponential $F(R)$-gravity is investigated. An additional modification to stabilize the effective dark energy oscillations during matter era is proposed and applied to two viable models. An analysis on the future evolution of the universe is performed. Furthermore, a unified model for early and late-time acceleration is proposed and studied.
We study radial perturbations of a wormhole in $R^2$ gravity to determine regions of stability. We also investigate massive and massless particle orbits and tidal forces in this space-time for a radially infalling observer.
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena of dark energy, imposes that current research focuses on a more precise study of the possible effects of modified gravity may have on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R,G) gravity and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metr ic perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا