We propose a new, nonparametric approach to learning and representing transition dynamics in Markov decision processes (MDPs), which can be combined easily with dynamic programming methods for policy optimisation and value estimation. This approach m
akes use of a recently developed representation of conditional distributions as emph{embeddings} in a reproducing kernel Hilbert space (RKHS). Such representations bypass the need for estimating transition probabilities or densities, and apply to any domain on which kernels can be defined. This avoids the need to calculate intractable integrals, since expectations are represented as RKHS inner products whose computation has linear complexity in the number of points used to represent the embedding. We provide guarantees for the proposed applications in MDPs: in the context of a value iteration algorithm, we prove convergence to either the optimal policy, or to the closest projection of the optimal policy in our model class (an RKHS), under reasonable assumptions. In experiments, we investigate a learning task in a typical classical control setting (the under-actuated pendulum), and on a navigation problem where only images from a sensor are observed. For policy optimisation we compare with least-squares policy iteration where a Gaussian process is used for value function estimation. For value estimation we also compare to the NPDP method. Our approach achieves better performance in all experiments.
Many machine learning tasks, such as learning with invariance and policy evaluation in reinforcement learning, can be characterized as problems of learning from conditional distributions. In such problems, each sample $x$ itself is associated with a
conditional distribution $p(z|x)$ represented by samples ${z_i}_{i=1}^M$, and the goal is to learn a function $f$ that links these conditional distributions to target values $y$. These learning problems become very challenging when we only have limited samples or in the extreme case only one sample from each conditional distribution. Commonly used approaches either assume that $z$ is independent of $x$, or require an overwhelmingly large samples from each conditional distribution. To address these challenges, we propose a novel approach which employs a new min-max reformulation of the learning from conditional distribution problem. With such new reformulation, we only need to deal with the joint distribution $p(z,x)$. We also design an efficient learning algorithm, Embedding-SGD, and establish theoretical sample complexity for such problems. Finally, our numerical experiments on both synthetic and real-world datasets show that the proposed approach can significantly improve over the existing algorithms.
Modeling distributions of covariates, or density estimation, is a core challenge in unsupervised learning. However, the majority of work only considers the joint distribution, which has limited utility in practical situations. A more general and usef
ul problem is arbitrary conditional density estimation, which aims to model any possible conditional distribution over a set of covariates, reflecting the more realistic setting of inference based on prior knowledge. We propose a novel method, Arbitrary Conditioning with Energy (ACE), that can simultaneously estimate the distribution $p(mathbf{x}_u mid mathbf{x}_o)$ for all possible subsets of unobserved features $mathbf{x}_u$ and observed features $mathbf{x}_o$. ACE is designed to avoid unnecessary bias and complexity -- we specify densities with a highly expressive energy function and reduce the problem to only learning one-dimensional conditionals (from which more complex distributions can be recovered during inference). This results in an approach that is both simpler and higher-performing than prior methods. We show that ACE achieves state-of-the-art for arbitrary conditional likelihood estimation and data imputation on standard benchmarks.
We consider the problem of learning in episodic finite-horizon Markov decision processes with an unknown transition function, bandit feedback, and adversarial losses. We propose an efficient algorithm that achieves $mathcal{tilde{O}}(L|X|sqrt{|A|T})$
regret with high probability, where $L$ is the horizon, $|X|$ is the number of states, $|A|$ is the number of actions, and $T$ is the number of episodes. To the best of our knowledge, our algorithm is the first to ensure $mathcal{tilde{O}}(sqrt{T})$ regret in this challenging setting; in fact it achieves the same regret bound as (Rosenberg & Mansour, 2019a) that considers an easier setting with full-information feedback. Our key technical contributions are two-fold: a tighter confidence set for the transition function, and an optimistic loss estimator that is inversely weighted by an $textit{upper occupancy bound}$.
We introduce a general framework for approximating regular conditional distributions (RCDs). Our approximations of these RCDs are implemented by a new class of geometric deep learning models with inputs in $mathbb{R}^d$ and outputs in the Wasserstein
-$1$ space $mathcal{P}_1(mathbb{R}^D)$. We find that the models built using our framework can approximate any continuous functions from $mathbb{R}^d$ to $mathcal{P}_1(mathbb{R}^D)$ uniformly on compacts, and quantitative rates are obtained. We identify two methods for avoiding the curse of dimensionality; i.e.: the number of parameters determining the approximating neural network depends only polynomially on the involved dimension and the approximation error. The first solution describes functions in $C(mathbb{R}^d,mathcal{P}_1(mathbb{R}^D))$ which can be efficiently approximated on any compact subset of $mathbb{R}^d$. Conversely, the second approach describes sets in $mathbb{R}^d$, on which any function in $C(mathbb{R}^d,mathcal{P}_1(mathbb{R}^D))$ can be efficiently approximated. Our framework is used to obtain an affirmative answer to the open conjecture of Bishop (1994); namely: mixture density networks are universal regular conditional distributions. The predictive performance of the proposed models is evaluated against comparable learning models on various probabilistic predictions tasks in the context of ELMs, model uncertainty, and heteroscedastic regression. All the results are obtained for more general input and output spaces and thus apply to geometric deep learning contexts.