ﻻ يوجد ملخص باللغة العربية
We present a novel, graphene-based device concept for high-frequency operation: a hot electron graphene base transistor (GBT). Simulations show that GBTs have high current on/off ratios and high current gain. Simulations and small-signal models indicate that it potentially allows THz operation. Based on energy band considerations we propose a specific materials solution that is compatible with SiGe process lines.
The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a
We report the first observation of gate-controlled field emission current from a tungsten diselenide (WSe2) monolayer, synthesized by chemical-vapour deposition on SiO2/Si substrate. Ni contacted WSe2 monolayer back-gated transistors, under high vacu
We study the effects of low-energy electron beam irradiation up to 10 keV on graphene based field effect transistors. We fabricate metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO$_2$, obtaining specific contact resist
The field-effect mobility of graphene devices is discussed. We argue that the graphene ballistic mean free path can only be extracted by taking into account both, the electrical characteristics and the channel length dependent mobility. In doing so w