ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices

145   0   0.0 ( 0 )
 نشر من قبل Zhihong Chen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The field-effect mobility of graphene devices is discussed. We argue that the graphene ballistic mean free path can only be extracted by taking into account both, the electrical characteristics and the channel length dependent mobility. In doing so we find a ballistic mean free path of 300nm at room-temperature for a carrier concentration of ~1e12/cm2 and that a substantial series resistance of around 300ohmum has to be taken into account. Furthermore, we demonstrate first quantum capacitance measurements on single-layer graphene devices.



قيم البحث

اقرأ أيضاً

Integrating negative capacitance (NC) into the field-effect transistors promises to break fundamental limits of power dissipation known as Boltzmann tyranny. However, realization of the stable static negative capacitance in the non-transient regime w ithout hysteresis remains a daunting task. Here we show that the failure to implement the NC stems from the lack of understanding that its origin is fundamentally related with the inevitable emergence of the domain state. We put forth an ingenious design for the ferroelectric domain-based field-effect transistor with the stable reversible static negative capacitance. Using dielectric coating of the ferroelectric capacitor enables the tunability of the negative capacitance improving tremendously the performance of the field-effect transistors.
413 - V. Ryzhii , M. Ryzhii , A. Satou 2008
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a s energy gap in different sections of the channel on the bias back-gate and top-gate voltages. Using this model, we calculate the dc and ac source-drain currents and the transconductance of GBL-FETs with both ballistic and collision dominated electron transport as functions of structural parameters, the bias back-gate and top-gate voltages, and the signal frequency. It is shown that there are two threshold voltages, $V_{th,1}$ and $V_{th,2}$, so that the dc current versus the top-gate voltage relation markedly changes depending on whether the section of the channel beneath the top gate (gated section) is filled with electrons, depleted, or filled with holes. The electron scattering leads to a decrease in the dc and ac currents and transconductances, whereas it weakly affects the threshold frequency. As demonstrated, the transient recharging of the gated section by holes can pronouncedly influence the ac transconductance resulting in its nonmonotonic frequency dependence with a maximum at fairly high frequencies.
Electrostatic gating lies in the heart of modern FET-based integrated circuits. Usually, the gate electrode has to be placed very close to the conduction channel, typically a few nanometers, in order to achieve efficient tunability. However, remote c ontrol of a FET device through a gate electrode placed far away is always highly desired, because it not only reduces the complexity of device fabrication, but also enables designing novel devices with new functionalities. Here, a non-local gating effect in graphene using both near-field optical nano-imaging and electrical transport measurement is reported. With assistance of absorbed water molecules, the charge density of graphene can be efficiently tuned by a local-gate placed over 30 {mu}m away. The observed non-local gating effect is initially driven by an in-plane electric field established between graphene regions with different charge densities due to the quantum capacitance near the Dirac point in graphene. The nonlocality is further amplified and largely enhanced by absorbed water molecules through screening the in-plane electric field and expending the transition length. This research reveals novel non-local phenomenon of Dirac electrons, and paves the way for designing electronic devices with remote-control using 2D materials with small density of states.
290 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The quantum Hall effect, with a Berrys phase of $pi$ is demonstrated here on a single graphene layer grown on the C-face of 4H silicon carbide. The mobility is $sim$ 20,000 cm$^2$/V$cdot$s at 4 K and ~15,000 cm$^2$/V$cdot$s at 300 K despite contamina tion and substrate steps. This is comparable to the best exfoliated graphene flakes on SiO$_2$ and an order of magnitude larger than Si-face epitaxial graphene monolayers. These and other properties indicate that C-face epitaxial graphene is a viable platform for graphene-based electronics.
192 - Xiaosong Wu , Yike Hu , Ming Ruan 2011
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation f rom the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا