ﻻ يوجد ملخص باللغة العربية
The field-effect mobility of graphene devices is discussed. We argue that the graphene ballistic mean free path can only be extracted by taking into account both, the electrical characteristics and the channel length dependent mobility. In doing so we find a ballistic mean free path of 300nm at room-temperature for a carrier concentration of ~1e12/cm2 and that a substantial series resistance of around 300ohmum has to be taken into account. Furthermore, we demonstrate first quantum capacitance measurements on single-layer graphene devices.
Integrating negative capacitance (NC) into the field-effect transistors promises to break fundamental limits of power dissipation known as Boltzmann tyranny. However, realization of the stable static negative capacitance in the non-transient regime w
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well a
Electrostatic gating lies in the heart of modern FET-based integrated circuits. Usually, the gate electrode has to be placed very close to the conduction channel, typically a few nanometers, in order to achieve efficient tunability. However, remote c
The quantum Hall effect, with a Berrys phase of $pi$ is demonstrated here on a single graphene layer grown on the C-face of 4H silicon carbide. The mobility is $sim$ 20,000 cm$^2$/V$cdot$s at 4 K and ~15,000 cm$^2$/V$cdot$s at 300 K despite contamina
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation f