ترغب بنشر مسار تعليمي؟ اضغط هنا

Corrections to Pauling residual entropy and single tetrahedron based approximations for the pyrochlore lattice Ising antiferromagnet

212   0   0.0 ( 0 )
 نشر من قبل Rajiv Singh
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study corrections to single tetrahedron based approximations for the entropy, specific heat and uniform susceptibility of the pyrochlore lattice Ising antiferromagnet, by a Numerical Linked Cluster (NLC) expansion. In a tetrahedron based NLC, the first order gives the Pauling residual entropy of ${1over 2}log{3over 2}approx 0.20273$. A 16-th order NLC calculation changes the residual entropy to 0.205507 a correction of 1.37 percent over the Pauling value. At high temperatures, the accuracy of the calculations is verified by a high temperature series expansion. We find the corrections to the single tetrahedron approximations to be at most a few percent for all the thermodynamic properties.


قيم البحث

اقرأ أيضاً

The honeycomb-lattice Ising antiferromagnet subjected to the imaginary magnetic field $H=itheta T /2$ with the topological angle $theta$ and temperature $T$ was investigated numerically. In order to treat such a complex-valued statistical weight, we employed the transfer-matrix method. As a probe to detect the order-disorder phase transition, we resort to an extended version of the fidelity $F$, which makes sense even for such a non-hermitian transfer matrix. As a preliminary survey, for an intermediate value of $theta$, we investigated the phase transition via the fidelity susceptibility $chi_F^{(theta)}$. The fidelity susceptibility $chi_F^{(theta)}$ exhibits a notable signature for the criticality as compared to the ordinary quantifiers such as the magnetic susceptibility. Thereby, we analyze the end-point singularity of the order-disorder phase boundary at $theta=pi$. We cast the $chi_F^{(theta)}$ data into the crossover-scaling formula with $delta theta = pi-theta$ scaled carefully. Our result for the crossover exponent $phi$ seems to differ from the mean-field and square-lattice values, suggesting that the lattice structure renders subtle influences as to the multi-criticality at $theta=pi$.
Corrections to scaling in the 3D Ising model are studied based on non-perturbative analytical arguments and Monte Carlo (MC) simulation data for different lattice sizes L. Analytical arguments show the existence of corrections with the exponent (gamm a-1)/nu (approximately 0.38), the leading correction-to-scaling exponent being omega =< (gamma-1)/nu. A numerical estimation of omega from the susceptibility data within 40 =< L =< 2048 yields omega=0.25(33). It is consistent with the statement omega =< (gamma-1)/nu, as well as with the value omega = 1/8 of the GFD theory. We reconsider the MC estimation of omega from smaller lattice sizes to show that it does not lead to conclusive results, since the obtained values of omega depend on the particular method chosen. In particular, estimates ranging from omega =1.274(72) to omega=0.18(37) are obtained by four different finite-size scaling methods, using MC data for thermodynamic average quantities, as well as for partition function zeros. We discuss the influence of omega on the estimation of exponents eta and nu.
Pyrochlore magnets are candidates for spin-ice behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare earth) supported by magnetothermal measurements on selected systems. By considering long ranged dipole -dipole as well as short-ranged superexchange interactions we get three distinct behaviours: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transition to paramagnetism, (iii) a partially ordered state with a sharp transition to paramagnetism. Thus these competing interactions can induce behaviour very different from conventional ``spin ice. Closely corresponding behaviour is seen in the real compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been discussed before, rather than (ii) as suggested earlier.
We investigate finite lattice approximations to the Wilson Renormalization Group in models of unconstrained spins. We discuss first the properties of the Renormalization Group Transformation (RGT) that control the accuracy of this type of approximati ons and explain different methods and techniques to practically identify them. We also discuss how to determine the anomalous dimension of the field. We apply our considerations to a linear sigma model in two dimensions in the domain of attraction of the Ising Fixed Point using a Bell-Wilson RGT. We are able to identify optimal RGTs which allow accurate computations of quantities such as critical exponents, fixed point couplings and eigenvectors with modest statistics. We finally discuss the advantages and limitations of this type of approach.
We present a numerical analysis of the entropy rate and statistical complexity related to the spin flip dynamics of the 2D Ising Ferromagnet at different temperatures T. We follow an information theoretic approach and test three different entropy est imation algorithms to asses entropy rate and statistical complexity of binary sequences. The latter are obtained by monitoring the orientation of a single spin on a square lattice of side-length L=256 at a given temperature parameter over time. The different entropy estimation procedures are based on the M-block Shannon entropy (a well established method that yields results for benchmarking purposes), non-sequential recursive pair substitution (providing an elaborate and an approximate estimator) and a convenient data compression algorithm contained in the zlib-library (providing an approximate estimator only). We propose an approximate measure of statistical complexity that emphasizes on correlations within the sequence and which is easy to implement, even by means of black-box data compression algorithms. Regarding the 2D Ising Ferromagnet simulated using Metropolis dynamics and for binary sequences of finite length, the proposed approximate complexity measure is peaked close to the critical temperature. For the approximate estimators, a finite-size scaling analysis reveals that the peak approaches the critical temperature as the sequence length increases. Results obtained using different spin-flip dynamics are briefly discussed. The suggested complexity measure can be extended to non-binary sequences in a straightforward manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا