ترغب بنشر مسار تعليمي؟ اضغط هنا

Voltage controlled exchange energies of a two electron silicon double quantum dot with and without charge defects in the dielectric

274   0   0.0 ( 0 )
 نشر من قبل Rajib Rahman
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum dots are artificial atoms used for a multitude of purposes. Charge defects are commonly present and can significantly perturb the designed energy spectrum and purpose of the dots. Voltage controlled exchange energy in silicon double quantum dots (DQD) represents a system that is very sensitive to charge position and is of interest for quantum computing. We calculate the energy spectrum of the silicon double quantum dot system using a full configuration interaction that uses tight binding single particle wavefunctions. This approach allows us to analyze atomic scale charge perturbations of the DQD while accounting for the details of the complex momentum space physics of silicon (i.e., valley and valley-orbit physics). We analyze how the energy levels and exchange curves for a DQD are affected by nearby charge defects at various positions relative to the dot, which are consistent with defects expected in the metal-oxide-semiconductor system.



قيم البحث

اقرأ أيضاً

We report charge sensing measurements of a silicon metal-oxide-semiconductor quantum dot using a single-electron transistor as a charge sensor with dynamic feedback control. Using digitallycontrolled feedback, the sensor exhibits sensitive and robust detection of the charge state of the quantum dot, even in the presence of charge drifts and random charge rearrangements. The sensor enables the occupancy of the quantum dot to be probed down to the single electron level.
101 - A. Hogele , S. Seidl , M. Kroner 2004
The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange i nteraction depends on the exciton charge and demonstrate how the interaction can be switched on and off with a small dc voltage. Furthermore, we report polarization sensitive analysis of the excitonic interband transition in a single quantum dot as a function of charge with and without magnetic field.
The two-electron exchange coupling in a nanowire double quantum dot (DQD) is shown to possess Moriyas anisotropic superexchange interaction under the influence of both the Rashba and Dresselhaus spin-orbit couplings (SOCs) and a Zeeman field. We reve al the controllability of the anisotropic exchange interaction via tuning the SOC and the direction of the external magnetic field. The exchange interaction can be transformed into an isotropic Heisenberg interaction, but the uniform magnetic field becomes an effective inhomogeneous field whose measurable inhomogeneity reflects the SOC strength. Moreover, the presence of the effective inhomogeneous field gives rise to an energy-level anticrossing in the low-energy spectrum of the DQD. By fitting the analytical expression for the energy gap to the experimental spectroscopic detections [S. Nadj-Perge et al., Phys. Rev. Lett. 108, 166801 (2012)], we obtain the complete features of the SOC in an InSb nanowire DQD.
119 - T. Ferrus , A. Rossi , M. Tanner 2009
As semiconductor device dimensions are reduced to the nanometer scale, effects of high defect density surfaces on the transport properties become important to the extent that the metallic character that prevails in large and highly doped structures i s lost and the use of quantum dots for charge sensing becomes complex. Here we have investigated the mechanism behind the detection of electron motion inside an electrically isolated double quantum dot that is capacitively coupled to a single electron transistor, both fabricated from highly phosphorous doped silicon wafers. Despite, the absence of a direct charge transfer between the detector and the double dot structure, an efficient detection is obtained. In particular, unusually large Coulomb peak shifts in gate voltage are observed. Results are explained in terms of charge rearrangement and the presence of inelastic cotunneling via states at the periphery of the single electron transistor dot.
Colour centres with long-lived spins are established platforms for quantum sensing and quantum information applications. Colour centres exist in different charge states, each of them with distinct optical and spin properties. Application to quantum t echnology requires the capability to access and stabilize charge states for each specific task. Here, we investigate charge state manipulation of individual silicon vacancies in silicon carbide, a system which has recently shown a unique combination of long spin coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge state switching through the bias applied to the colour centre in an integrated silicon carbide opto-electronic device. We show that the electronic environment defined by the doping profile and the distribution of other defects in the device plays a key role for charge state control. Our experimental results and numerical modeling evidence that control of these complex interactions can, under certain conditions, enhance the photon emission rate. These findings open the way for deterministic control over the charge state of spin-active colour centres for quantum technology and provide novel techniques for monitoring doping profiles and voltage sensing in microscopic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا