ﻻ يوجد ملخص باللغة العربية
In this paper we consider excited state g-functions, that is, overlaps between boundary states and excited states in boundary conformal field theory. We find a new method to calculate these overlaps numerically using a variation of the truncated conformal space approach. We apply this method to the Lee-Yang model for which the unique boundary perturbation is integrable and for which the TBA system describing the boundary overlaps is known. Using the truncated conformal space approach we obtain numerical results for the ground state and the first three excited states which are in excellent agreement with the TBA results. As a special case we can calculate the standard g-function which is the overlap with the ground state and find that our new method is considerably more accurate than the original method employed by Dorey et al.
We consider the space of boundary conditions of Virasoro minimal models formed from the composition of a collection of flows generated by phi_{1,3}. These have recently been shown to fall naturally into a sequence, each term having a coordinate on it
In this paper we continue the study of the truncated conformal space approach to perturbed boundary conformal field theories. This approach to perturbation theory suffers from a renormalisation of the coupling constant and a multiplicative renormalis
We study the spectrum of Landau-Ginzburg theories in 1+1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reprod
In this paper we continue the study of the truncated conformal space approach to perturbed conformal field theories, this time applied to bulk perturbations and focusing on the leading truncation-dependent corrections to the spectrum. We find express
In conformal field theory in Minkowski momentum space, the 3-point correlation functions of local operators are completely fixed by symmetry. Using Ward identities together with the existence of a Lorentzian operator product expansion (OPE), we show