ﻻ يوجد ملخص باللغة العربية
In this paper we continue the study of the truncated conformal space approach to perturbed conformal field theories, this time applied to bulk perturbations and focusing on the leading truncation-dependent corrections to the spectrum. We find expressions for the leading terms in the ground state energy divergence, the coupling constant renormalisation and the energy rescaling. We apply these methods to problems treated in two seminal papers and show how these RG improvements greatly increase the predictive power of the TCSA approach. One important outcome is that the TCSA spectrum of excitations is predicted not to converge for perturbations of conformal weight greater than 3/4, but the ratios of excitation energies should converge.
In this paper we continue the study of the truncated conformal space approach to perturbed boundary conformal field theories. This approach to perturbation theory suffers from a renormalisation of the coupling constant and a multiplicative renormalis
We study the spectrum of Landau-Ginzburg theories in 1+1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reprod
In this paper we consider excited state g-functions, that is, overlaps between boundary states and excited states in boundary conformal field theory. We find a new method to calculate these overlaps numerically using a variation of the truncated conf
The application of the exact renormalisation group to a many-fermion system with a short-range attractive force is studied. We assume a simple ansatz for the effective action with effective bosons, describing pairing effects and derive a set of appro
We discuss the errors introduced by level truncation in the study of boundary renormalisation group flows by the Truncated Conformal Space Approach. We show that the TCSA results can have the qualitative form of a sequence of RG flows between differe