ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge superconductivity in Nb thin film microbridges revealed by integral and spatially resolved electric transport

61   0   0.0 ( 0 )
 نشر من قبل Robert Werner
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The resistance $R$ vs perpendicular external magnetic field $H$ was measured for superconducting Nb thin--film microbridges with and without microholes [antidots (ADs)]. Well below the transition temperature, integral $R(H)$ measurements of the resistive transition to the normal state on the plain bridge show two distinct regions, which can be identified as bulk and edge superconductivity, respectively. The latter case appears when bulk superconductivity becomes suppressed at the upper critical field $H_{c2}$ and below the critical field of edge superconductivity $H_{c3}approx 1.7, H_{c2}$. The presence of additional edges in the AD bridge leads to a different shape of the $R(H)$ curves. We used low-temperature scanning laser microscopy (LTSLM) to visualize the current distribution in the plain and AD bridge upon sweeping $H$. While the plain bridge shows a dominant LTSLM signal at its edges for $H > H_{c2}$ the AD bridge also gives a signal from the inner parts of the bridge due to the additional edge states around the ADs. LTSLM reveals an asymmetry in the current distribution between left and right edges, which confirms theoretical predictions. Furthermore, the experimental results are in good agreement with our numerical simulations (based on the time-dependent Ginzburg--Landau model) yielding the spatial distribution of the order parameter and current density for different bias currents and $H$ values.

قيم البحث

اقرأ أيضاً

The dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders is experimentally investigated. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 10 - 20 Oe and duration of a few $mu$s. The jumps take place when the total current in the wall, not the current density, exceeds some critical value. In addition there are small jumps and/or smooth penetration, and their contribution can reach 20% of the total penetrating flux. It is demonstrated that the magnetic field inside the cylinder exhibits several oscillations. The number of giant jumps reduces with temperature.
We predict that superconductivity in thin films can be stabilized in high magnetic fields if the superconductor is driven out of equilibrium by a DC voltage bias. For realistic material parameters and temperatures, we show that superconductivity is r estored in fields many times larger than the Chandrasekhar-Clogston limit. After motivating the effect analytically, we perform rigorous numerical calculations to corroborate the findings, and present concrete experimental signatures. On the technical side, we also introduce a new form for the nonequilibrium kinetic equations, which generalizes and simplifies previous formulations of the problem.
To study the superconducting gap structure of BiS$_2$-based layered compound NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ ($T$$_{rm c}$ = 5 K), we measured the thermal conductivity $kappa$, which is a sensitive probe of the low-energy quasiparticle spectrum. In t he absence of a magnetic field, there is only a very small residual linear term in the thermal conductivity $kappa_{0}$/$T$ at $T$ $rightarrow$ 0, indicating the absence of a residual normal fluid, expected for nodal superconductors. Moreover, the applied magnetic field hardly affects the thermal conductivity in the wide range of the vortex state, indicating the absence of Doppler shifted quasiparticles. These results provide evidence that NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ is fully gapped superconductor. The obtained gap structure, along with the robustness of the superconductivity against the impurity, suggest a conventional $s$-wave superconducting state in NdO$_{0.71}$F$_{0.29}$BiS$_{2}$.
119 - W. J. Zhang , S. K. He , H. F. Liu 2012
Superconducting Nb thin films with rectangular arrays of submicron antidots have been systemically investigated by transport measurements. In low fields, the magnetoresistance curves demonstrate well-defined dips at integral and rational numbers of f lux quanta per unit cell, which corresponds to a superconducting wire network-like regime. When the magnetic field is higher than a saturation field, interstitial vortices interrupt the collective oscillation in low fields and form vortex sublattice, where a larger magnetic field interval is observed. In higher fields, a crossover behavior from the interstitial sublattice state to a single-loop-like state is observed, characterized by oscillations with a period of $Phi_0/pi r_{eff}^2$, originating from the existence of edge superconducting states with a size $r_{eff}$ around the antidots.
We report on magneto-optical imaging, magnetization, Hall effect and magneto-resistance experiments in Nb/Al_2O_3/Co thin film heterostructures. The magnetic field is applied perpendicularly to the plane of the film and gives rise to abrupt flux pene tration of dendritic form. A magnetization texture is imprinted in the Co layer in perfect coincidence with these ramifications. The spin domains that mimic the vortex dendrites are stable upon the field removal. Moreover, the imprinted spin structure remains visible up to room temperature. Complementary magnetization, Hall effect and magneto-resistance experiments were performed in a similar sample where electrical contacts were placed on the Co layer. In the region of the field - temperature diagram where flux instabilities are known to occur in Nb films, irregular jumps are observed in the magnetic hysteresis and large amplitude noise is detected in the magneto-resistance and Hall resistivity data when measured as a function of the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا