ﻻ يوجد ملخص باللغة العربية
In this work the equivariant signature of a manifold with proper action of a discrete group is defined as an invariant of equivariant bordisms. It is shown that the computation of this signature can be reduced to its computation on fixed points sets equipped with their tubular neighborhoods. It is given a description of the equivariant vector bundles with action of a discrete group $G$ for the case when the action over the base is proper quasi-free, i.e. the stationary subgroup of any point is finite. The description is given in terms of some classifying space.
Let $G$ be a Lie group and $GtoAut(G)$ be the canonical group homomorphism induced by the adjoint action of a group on itself. We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal 2
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of
We construct a regularized index of a generalized Dirac operator on a complete Riemannian manifold endowed with a proper action of a unimodular Lie group. We show that the index is preserved by a certain class of non-compact cobordisms and prove a gl
In this paper, by use of techniques associated to Cobordism theory and Morse theory, we give a proof of Space-Form-Conjecture, i.e. a free action of a finite group on 3-manifold is equivalent to a linear action.
Let $G=SU(2)$ and let $Omega G$ denote the space of based loops in SU(2). We explicitly compute the $R(G)$-module structure of the topological equivariant $K$-theory $K_G^*(Omega G)$ and in particular show that it is a direct product of copies of $K^