ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusually large enhancement of thermopower in an electric field induced two-dimensional electron gas

308   0   0.0 ( 0 )
 نشر من قبل Hiromichi Ohta
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensionally confined electrons showing unusually large thermopower (S) have attracted attention as a potential approach for developing high performance thermoelectric materials. However, enhanced S has never been observed in electric field induced two-dimensional electron gas (2DEG). Here we demonstrate electric field modulation of S for a field effect transistor (FET) fabricated on a SrTiO3 crystal using a water-infiltrated nanoporous glass as the gate insulator. An electric field application confined carrier electrons up to ~2E15 /cm^2 in an extremely thin (~2 nm) 2DEG. Unusually large enhancement of |S| was observed when the sheet carrier concentration exceeded 2.5E14 /cm^2, and it modulated from ~600 (~2E15 /cm^2) to ~950 {mu}V/K (~8E14 /cm^2), which were approximately five times larger than those of the bulk, clearly demonstrating that an electric field induced 2DEG provides unusually large enhancement of |S|.



قيم البحث

اقرأ أيضاً

106 - S. Maximov 2004
The low magnetic field diffusion thermopower of a high mobility GaAs-heterostructure has been measured directly on an electrostatically defined micron-scale Hall-bar structure at low temperature (T = 1.6 K) in the low magnetic field regime (B < 1.2 T ) where delocalized quantum Hall states do not influence the measurements. The sample design allowed the determination of the field dependence of the thermopower both parallel and perpendicular to the temperature gradient, denoted respectively by Sxx (longitudinal thermopower) and Syx (Nernst-Ettinghausen coefficient). The experimental data show clear oscillations in Sxx and Syx due to the formation of Landau levels for 0.3 T < B < 1.2 T and reveal that Syx is approximately 120 times larger than Sxx at a magnetic field of 1 T, which agrees well with the theoretical prediction.
322 - Lei Xu , Tao Zhu 2021
We present a theoretical study of the in-plane electric filed induced exciton dissociation in two dimensional (2D) transition metal dichcogenides MX$_2$ (M=Mo, W; X=S, Se). The exciton resonance states are determined from continuum states by the comp lex coordinate rotation method with the Lagrange mesh method to solve the exciton Hamiltonian. Our results show that the exciton dissociation process can be effectively controlled by the electric field. The critical electric fields needed for ground state exciton to make the dissociation process dominating over combination processes is in the range of 73 - 91 V/$mu$m for monolayer MX$_2$. Compared with ground state exciton, the excited excitons are more easily to be dissociated due to their delocalization nature, e.g. the critical field for 2$s$ excited state is as low as 12 - 16 V/$mu$m . More importantly, we found that exciton become more susceptive to external electric field and a much smaller critical electric field is needed in the presence of a dielectric substrate and in finite-layer MX$_2$. This work may provide a promising way to enhance the exciton dissociation process and improve the performance of 2D materials based optoelectronic devices.
178 - Z. Q. Liu , W. Lu , S. W. Zeng 2014
We report very large bandgap enhancement in SrTiO3 (STO) films (fabricated by pulsed laser deposition below 800 {deg}C), which can be up to 20% greater than the bulk value, depending on the deposition temperature. The origin is comprehensively invest igated and finally attributed to Sr/Ti antisite point defects, supported by density functional theory calculations. More importantly, the bandgap enhancement can be utilized to tailor the electronic and magnetic phases of the two-dimensional electron gas (2DEG) in STO-based interface systems. For example, the oxygen-vacancy-induced 2DEG (2DEG-V) at the interface between amorphous LaAlO3 and STO films is more localized and the ferromagnetic order in the STO-film-based 2DEG-V can be clearly seen from low-temperature magnetotransport measurements. This opens an attractive path to tailor electronic, magnetic and optical properties of STO-based oxide interface systems under intensive focus in the oxide electronics community. Meanwhile, our study provides key insight into the origin of the fundamental issue that STO films are difficult to be doped into the fully metallic state by oxygen vacancies.
We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi$_2$Se$_3$ from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achie ved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.
Multi-orbital physics in quasi-two-dimensional electron gases (q2DEGs) triggers unique phenomena not observed in bulk materials, such as unconventional superconductivity and magnetism. Here, we investigate the mechanism of orbital selective switching of the spin-polarization in the oxide q2DEG formed at the (001) interface between the LaAlO$_{3}$, EuTiO$_{3}$ and SrTiO$_{3}$ band insulators. By using density functional theory calculations, transport, magnetic and x-ray spectroscopy measurements, we find that the filling of titanium-bands with 3d$_{xz,yz}$ orbital character in the EuTiO3 layer and at the interface with SrTiO$_{3}$ induces an antiferromagnetic to ferromagnetic switching of the exchange interaction between Eu-4f$^{7}$ magnetic moments. The results explain the observation of the carrier density dependent ferromagnetic correlations and anomalous Hall effect in this q2DEG, and demonstrate how combined theoretical and experimental approaches can lead to a deeper understanding of novel electronic phases and serve as a guide for the materials design for advanced electronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا