ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure induced renormalization of energy scales in the unconventional superconductor FeTe0.6Se0.4

54   0   0.0 ( 0 )
 نشر من قبل Karol Marty
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out a pressure study of the unconventional superconductor FeTe0.6Se0.4 up to 1.5 GPa by neutron scattering, resistivity and magnetic susceptibility measurements. We have extracted the neutron spin resonance energy and the superconducting transition temperature as a function of applied pressure. Both increase with pressure up to a maximum at ~1.3 GPa. This analogous qualitative behavior is evidence for a correlation between these two fundamental parameters of unconventional superconductivity. However, Tc and the resonance energy do not scale linearly and thus a simple relationship between these energies does not exist even in a single sample. The renormalization of the resonance energy relative to the transition temperature is here attributed to an increased hybridization. The present results appear to be consistent with a pressure-induced weakening of the coupling strength associated with the fundamental pairing mechanism.

قيم البحث

اقرأ أيضاً

Simultaneous low-temperature electrical resistivity and Hall effect measurements were performed on single-crystalline Bi2Se3 under applied pressures up to 50 GPa. As a function of pressure, superconductivity is observed to onset above 11 GPa with a t ransition temperature Tc and upper critical field Hc2 that both increase with pressure up to 30 GPa, where they reach maximum values of 7 K and 4 T, respectively. Upon further pressure increase, Tc remains anomalously constant up to the highest achieved pressure. Conversely, the carrier concentration increases continuously with pressure, including a tenfold increase over the pressure range where Tc remains constant. Together with a quasi-linear temperature dependence of Hc2 that exceeds the orbital and Pauli limits, the anomalously stagnant pressure dependence of Tc points to an unconventional pressure-induced pairing state in Bi2Se3 that is unique among the superconducting topological insulators.
Recently discovered Z2 topological kagome metals AV3Sb5 (A = K, Rb, and Cs) exhibit charge density wave (CDW) phases and novel superconducting paring states, providing a versatile platform for studying the interplay between electron correlation and q uantum orders. Here we directly visualize CDW-induced bands renormalization and energy gaps in RbV3Sb5 using angle-resolved photoemission spectroscopy, pointing to the key role of tuning van Hove singularities to the Fermi energy in mechanisms of ordering phases. Near the CDW transition temperature, the bands around the Brillouin zone (BZ) boundary are shifted to high-binding energy, forming an M-shape band with singularities near the Fermi energy. The Fermi surfaces are partially gapped and the electronic states on the residual ones should be possibly dedicated to the superconductivity. Our findings are significant in understanding CDW formation and its associated superconductivity.
The orthorhombic uranium dichalcogenide UTe$_2$ displays superconductivity below 1.7 K, with the anomalous feature of retaining 50$%$ of normal state (ungapped) carriers, according to heat capacity data from two groups. Incoherent transport that cros ses over from above 50 K toward a low temperature, Kondo lattice Fermi liquid regime indicates strong magnetic fluctuations and the need to include correlation effects in theoretical modeling. We report density functional theory plus Hubbard U (DFT+U) results for UTe$_2$ to provide a platform for modeling its unusual behavior, focusing on ferromagnetic (FM, time reversal breaking) long range correlations along the ${hat a}$ axis as established by magnetization measurements and confirmed by our calculations. States near the Fermi level are dominated by the $j=frac{5}{2}$ configuration, with the $j_z=pmfrac{1}{2}$ sectors being effectively degenerate and half-filled. Unlike the small-gap insulating nonmagnetic electronic spectrum, the FM Fermi surfaces are large (strongly metallic) and display low dimensional features, reminiscent of the FM superconductor UGe$_2$.
A polycrystalline sample of FeSe, which adopts the tetragonal PbO-type structure (P4/nmm) at room temperature, has been prepared using solid state reaction. We have investigated pressure-induced structural changes in tetragonal FeSe at varying hydros tatic pressures up to 0.6 GPa in the orthorhombic (T = 50 K) and tetragonal (T = 190 K) phases using high resolution neutron powder diffraction. We report that the structure is quite compressible with a Bulk modulus around 31 GPa to 33 GPa and that the pressure response is anisotropic with a larger compressibility along the c-axis. Key bond angles of the SeFe4 pyramids and FeSe4 tetrahedra are also determined as a function of pressure.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measur ed in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا