ﻻ يوجد ملخص باللغة العربية
We study single-good auctions in a setting where each player knows his own valuation only within a constant multiplicative factor delta{} in (0,1), and the mechanism designer knows delta. The classical notions of implementation in dominant strategies and implementation in undominated strategies are naturally extended to this setting, but their power is vastly different. On the negative side, we prove that no dominant-strategy mechanism can guarantee social welfare that is significantly better than that achievable by assigning the good to a random player. On the positive side, we provide tight upper and lower bounds for the fraction of the maximum social welfare achievable in undominated strategies, whether deterministically or probabilistically.
The market economy deals with many interacting agents such as buyers and sellers who are autonomous intelligent agents pursuing their own interests. One such multi-agent system (MAS) that plays an important role in auctions is the combinatorial aucti
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per
We study combinatorial auctions with bidders that exhibit endowment effect. In most of the previous work on cognitive biases in algorithmic game theory (e.g., [Kleinberg and Oren, EC14] and its follow-ups) the focus was on analyzing the implications
A standard result from auction theory is that bidding truthfully in a second price auction is a weakly dominant strategy. The result, however, does not apply in the presence of Cost Per Action (CPA) constraints. Such constraints exist, for instance,
We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade, several strategyproof budget-feasib