ترغب بنشر مسار تعليمي؟ اضغط هنا

Jeans analysis of self-gravitating systems in f(R)-gravity

158   0   0.0 ( 0 )
 نشر من قبل Salvatore Capozziello
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamics and collapse of collisionless self-gravitating systems is described by the coupled collisionless Boltzmann and Poisson equations derived from $f(R)$-gravity in the weak field approximation. Specifically, we describe a system at equilibrium by a time-independent distribution function $f_0(x,v)$ and two potentials $Phi_0(x)$ and $Psi_0(x)$ solutions of the modified Poisson and collisionless Boltzmann equations. Considering a small perturbation from the equilibrium and linearizing the field equations, it can be obtained a dispersion relation. A dispersion equation is achieved for neutral dust-particle systems where a generalized Jeans wave-number is obtained. This analysis gives rise to unstable modes not present in the standard Jeans analysis (derived assuming Newtonian gravity as weak filed limit of $f(R)=R$). In this perspective, we discuss several self-gravitating astrophysical systems whose dynamics could be fully addressed in the framework of $f(R)$-gravity.



قيم البحث

اقرأ أيضاً

The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an d $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
We point out that there are only three polarizations for gravitational waves in $f(R)$ gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six polarizations by the Newman-Penrose quantities is based on weak, plane and null gravitational waves, so it is not applicable to the massive mode.
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci sca lar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
145 - K. Bamba 2013
A generic feature of viable exponential $F(R)$-gravity is investigated. An additional modification to stabilize the effective dark energy oscillations during matter era is proposed and applied to two viable models. An analysis on the future evolution of the universe is performed. Furthermore, a unified model for early and late-time acceleration is proposed and studied.
We explore the cosmological dynamics of an effective f(R) model constructed from a renormalisation group (RG) improvement of the Einstein--Hilbert action, using the non-perturbative beta functions of the exact renormalisation group equation. The resu lting f(R) model has some remarkable properties. It naturally exhibits an unstable de Sitter era in the ultraviolet (UV), dynamically connected to a stable de Sitter era in the IR, via a period of radiation and matter domination, thereby describing a non-singular universe. We find that the UV de Sitter point is one of an infinite set, which make the UV RG fixed point inaccessible to classical cosmological evolution. In the vicinity of the fixed point, the model behaves as R^2 gravity, while it correctly recovers General Relativity at solar system scales. In this simplified model, the fluctuations are too large to be the observed ones, and more ingredients in the action are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا