ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia and sigma Orionis from 20 Msol to 3 MJup: the most complete and precise Initial Mass Function with a parallax determination?

34   0   0.0 ( 0 )
 نشر من قبل Jos\\'e A. Caballero
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jose A. Caballero




اسأل ChatGPT حول البحث

The sigma Orionis cluster is to date the star-forming region with the largest number of confirmed brown dwarfs and substellar objects below the deuterium burning mass limit. The most massive star, sigma Ori Aa, just in the cluster centre, is the sim20Msol-mass O9.5V star that illuminates the Horsehead Nebula, while the least massive object yet reported, S Ori 70, is only around 3 MJup. In the middle, there is a continuum of stars and substellar objects of all types (including magnetically active B2Vp stars, Herbig-Haro objects, FU Ori stars or T Tauri brown dwarfs) that makes the cluster a cornerstone in the study of the initial mass function, disc presence, X-ray emission or accretion at all mass domains. However, the derived masses strongly depend on the actual heliocentric distance to the cluster. Gaia will solve the dilemma.

قيم البحث

اقرأ أيضاً

Understanding the properties of young open clusters, such as the Initial Mass Function (IMF), star formation history and dynamic evolution, is crucial to obtain reliable theoretical predictions of the mechanisms involved in the star formation process . We want to obtain a list, as complete as possible, of confirmed members of the young open cluster Gamma Velorum, with the aim of deriving general cluster properties such as the IMF. We used all available spectroscopic membership indicators within the Gaia-ESO public archive together with literature photometry and X-ray data and, for each method, we derived the most complete list of candidate cluster members. Then, we considered photometry, gravity and radial velocities as necessary conditions to select a subsample of candidates whose membership was confirmed by using the lithium and H$alpha$ lines and X-rays as youth indicators. We found 242 confirmed and 4 possible cluster members for which we derived masses using very recent stellar evolutionary models. The cluster IMF in the mass range investigated in this study shows a slope of $alpha=2.6pm0.5$ for $0.5<M/M_odot <1.3$ and $alpha=1.1pm0.4$ for $0.16<M/M_odot <0.5$ and is consistent with a standard IMF. The similarity of the IMF of the young population around $gamma^2 $Vel to that in other star forming regions and the field suggests it may have formed through very similar processes.
The Lambda Orionis Star Forming Region is dominated by the O8 III star lambda^1 Ori. Among other structures, it includes a CO and a dust ring whose diameter is about nine deg, the S264 HII region, a large number of IRAS sources, the Barnard 30 and 35 dark clouds and a cluster associated with the central star, the Lambda Ori cluster (Collinder 69). We derive the initial mass function for this cluster (~5 Myr), covering several orders of magnitude in mass (50 - 0.02 Msun).
the present paper, we propose that the stellar initial mass distributions as known as IMF are best fitted by $q$-Weibulls that emerge within nonextensive statistical mechanics. As a result, we show that the Salpeters slope of $sim$2.35 is replaced wh en a $q$-Weibull distribution is used. Our results point out that the nonextensive entropic index $q$ represents a new approach for understanding the process of the star-forming and evolution of massive stars.
407 - N. Lodieu 2009
(ABRIDGED) We have analysed the near-infrared photometric data from the Fourth Data Release (DR4) of the UKIRT Infrared Deep Sky Suvey (UKIDSS) Galactic Clusters Survey (GCS) to derive the cluster luminosity and mass functions, evaluate the extent of the cluster, and study the distribution and variability of low-mass stars and brown dwarfs down to the deuterium-burning limit. We have recovered most of the previously published members and found a total of 287 candidate members within the central 30 arcmin in the 0.5-0.009 Msun mass range, including new objects not previously reported in the literature. This new catalogue represents a homogeneous dataset of brown dwarf member candidates over the central 30 arcmin of the cluster. The expected photometric contamination by field objects with similar magnitudes and colours to sigma Orionis members is ~15%. We present evidence of variability at the 99.5% confidence level over ~yearly timescales in 10 member candidates that exhibit signs of youth and the presence of disks. The level of variability is low (<0.3 mag) and does not impact the derivation of the cluster luminosity and mass functions. Furthermore, we find a possible dearth of brown dwarfs within the central five arcmin of the cluster, which is not caused by a lower level of photometric sensitivity around the massive, O-type multiple star sigma Ori in the GCS survey. Using state-of-the-art theoretical models, we derived the luminosity and mass functions within the central 30 arcmin from the cluster centre, with completeness down to J = 19 mag, corresponding to masses ranging from 0.5 Msun down to the deuterium-burning mass boundary (~0.013 Msun). The mass function of sigma Orionis in this mass interval shows a power law index alpha = 0.5+/-0.2.
We performed a deep wide field optical survey of the young (~100-150 Myr) open cluster Blanco1 to study its low mass population well down into the brown dwarf regime and estimate its mass function over the whole cluster mass range.The survey covers 2 .3 square degrees in the I and z-bands down to I ~ z ~ 24 with the CFH12K camera. Considering two different cluster ages (100 and 150 Myr), we selected cluster member candidates on the basis of their location in the (I,I-z) CMD relative to the isochrones, and estimated the contamination by foreground late-type field dwarfs using statistical arguments, infrared photometry and low-resolution optical spectroscopy. We find that our survey should contain about 57% of the cluster members in the 0.03-0.6 Mo mass range, including 30-40 brown dwarfs. The candidates radial distribution presents evidence that mass segregation has already occured in the cluster. We took it into account to estimate the cluster mass function across the stellar/substellar boundary. We find that, between 0.03Mo and 0.6Mo, the cluster mass distribution does not depend much on its exact age, and is well represented by a single power-law, with an index alpha=0.69 +/- 0.15. Over the whole mass domain, from 0.03Mo to 3Mo, the mass function is better fitted by a log-normal function with m0=0.36 +/- 0.07Mo and sigma=0.58 +/- 0.06. Comparison between the Blanco1 mass function, other young open clusters MF, and the galactic disc MF suggests that the IMF, from the substellar domain to the higher mass part, does not depend much on initial conditions. We discuss the implications of this result on theories developed to date to explain the origin of the mass distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا