ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia-ESO Survey: membership and Initial Mass Function of the Gamma Velorum cluster

121   0   0.0 ( 0 )
 نشر من قبل Loredana Prisinzano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the properties of young open clusters, such as the Initial Mass Function (IMF), star formation history and dynamic evolution, is crucial to obtain reliable theoretical predictions of the mechanisms involved in the star formation process. We want to obtain a list, as complete as possible, of confirmed members of the young open cluster Gamma Velorum, with the aim of deriving general cluster properties such as the IMF. We used all available spectroscopic membership indicators within the Gaia-ESO public archive together with literature photometry and X-ray data and, for each method, we derived the most complete list of candidate cluster members. Then, we considered photometry, gravity and radial velocities as necessary conditions to select a subsample of candidates whose membership was confirmed by using the lithium and H$alpha$ lines and X-rays as youth indicators. We found 242 confirmed and 4 possible cluster members for which we derived masses using very recent stellar evolutionary models. The cluster IMF in the mass range investigated in this study shows a slope of $alpha=2.6pm0.5$ for $0.5<M/M_odot <1.3$ and $alpha=1.1pm0.4$ for $0.16<M/M_odot <0.5$ and is consistent with a standard IMF. The similarity of the IMF of the young population around $gamma^2 $Vel to that in other star forming regions and the field suggests it may have formed through very similar processes.



قيم البحث

اقرأ أيضاً

186 - L. Spina , S. Randich , F. Palla 2014
Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary s ystems.In spite of this, detailed abundance studies are currently available for relatively few regions. In this context, we present the analysis of the metallicity of the Gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. The Gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly subsolar, with a mean [Fe/H]=-0.057+/-0.018 dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of ~60 M_Sun hydrogen-depleted material from the circumstellar disk.
We show that non-magnetic models for the evolution of pre-main-sequence (PMS) stars *cannot* simultaneously describe the colour-magnitude diagram (CMD) and the pattern of lithium depletion seen in the cluster of young, low-mass stars surrounding $gam ma^2$ Velorum. The age of 7.5+/-1 Myr inferred from the CMD is much younger than that implied by the strong Li depletion seen in the cluster M-dwarfs and the Li depletion occurs at much redder colours than predicted. The epoch at which a star of a given mass depletes its Li and the surface temperature of that star are both dependent on its radius. We demonstrate that if the low-mass stars have radii ~10 per cent larger at a given mass and age, then both the CMD and Li depletion pattern of the Gamma Vel cluster are explained at a common age of 18-21 Myr. This radius inflation could be produced by some combination of magnetic suppression of convection and extensive cool starspots. Models that incorporate radius inflation suggest that PMS stars similar to those in the Gamma Vel cluster, in the range 0.2<M/Msun<0.7, are at least a factor of two older and ~7 per cent cooler than previously thought and that their masses are much larger (by >30 per cent) than inferred from conventional, non-magnetic models in the Hertzsprung-Russell diagram. Systematic changes of this size may be of great importance in understanding the evolution of young stars, disc lifetimes and the formation of planetary systems.
67 - E. Franciosini 2018
Gaia-ESO Survey observations of the young Gamma Velorum cluster led to the discovery of two kinematically-distinct populations, Gamma Vel A and B, respectively, with population B extended over several square degrees in the Vela OB2 association. Using the Gaia DR2 data for a sample of high-probability cluster members, we find that the two populations differ not only kinematically, but are also located at different distances along the line of sight, with the main cluster Gamma Vel A being closer. A combined fit of the two populations yields $varpi_A = 2.895 pm 0.008$ mas and $varpi_B = 2.608 pm 0.017$ mas, with intrinsic dispersions of $0.038 pm 0.011$ mas and $0.091 pm 0.016$ mas, respectively. This translates into distances of $345.4^{+1.0+12.4}_{-1.0-11.5},$ pc and $383.4^{+2.5+15.3}_{-2.5-14.2},$ pc, respectively, showing that Gamma Vel A is closer than Gamma Vel B by $sim$38 pc. We find that the two clusters are nearly coeval, and that Gamma Vel B is expanding. We suggest that Gamma Vel A and B are two independent clusters located along the same line of sight.
Previous studies of open clusters have shown that lithium depletion is not only strongly age dependent but also shows a complex pattern with other parameters that is not yet understood. For pre- and main-sequence late-type stars, these parameters inc lude metallicity, mixing mechanisms, convection structure, rotation, and magnetic activity. We perform a thorough membership analysis for a large number of stars observed within the Gaia-ESO survey (GES) in the field of 20 open clusters, ranging in age from young clusters and associations, to intermediate-age and old open clusters. Based on the parameters derived from the GES spectroscopic observations, we obtained lists of candidate members for each of the clusters in the sample by deriving RV distributions and studying the position of the kinematic selections in the EW(Li) versus Teff plane to obtain lithium members. We used gravity indicators to discard field contaminants and studied [Fe/H] metallicity to further confirm the membership of the candidates. We also made use of studies using recent data from the Gaia DR1 and DR2 releases to assess our member selections. We identified likely member candidates for the sample of 20 clusters observed in GES (iDR4) with UVES and GIRAFFE, and conducted a comparative study that allowed us to characterize the properties of these members, as well as identify field contaminant stars, both lithium-rich giants and non-giant outliers. This work is the first step towards the calibration of the lithium-age relation and its dependence on other GES parameters. During this project we aim to use this relation to infer the ages of GES field stars, and identify their potential membership to young associations and stellar kinematic groups of different ages.
The young (~2 Myr) cluster Chamaeleon I is one of the closest laboratories to study the early stages of star cluster dynamics in a low-density environment. We studied its structural and kinematical properties combining parameters from the high-resolu tion spectroscopic survey Gaia-ESO with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion (sigma = 1.14 pm 0.35 km s^{-1}) of the stellar population and the dispersion of the pre-stellar cores (~0.3 km s^{-1}) derived from submillimeter observations. The origin of this discrepancy, which has been observed in other young star clusters is not clear. It may be due to either the effect of the magnetic field on the protostars and the filaments, or to the dynamical evolution of stars driven by two-body interactions. Furthermore, the analysis of the kinematic properties of the stellar population put in evidence a significant velocity shift (~1 km s^{-1}) between the two sub-clusters located around the North and South main clouds. This result further supports a scenario, where clusters form from the evolution of multiple substructures rather than from a monolithic collapse. Using three independent spectroscopic indicators (the gravity indicator $gamma$, the equivalent width of the Li line, and the H_alpha 10% width), we performed a new membership selection. We found six new cluster members located in the outer region of the cluster. Starting from the positions and masses of the cluster members, we derived the level of substructure Q, the surface density Sigma and the level of mass segregation $Lambda_{MSR}$ of the cluster. The comparison between these structural properties and the results of N-body simulations suggests that the cluster formed in a low density environment, in virial equilibrium or supervirial, and highly substructured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا