ﻻ يوجد ملخص باللغة العربية
A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas from stochastic geometry and spatial statistics. Its parameters are fitted to image data gained by electron tomography (ET), where adaptive thresholding and stochastic segmentation have been used to represent morphological features of the considered ET data by unions of overlapping spheres. Their midpoints are modeled by a stack of 2D point processes with a suitably chosen correlation structure, whereas a moving-average procedure is used to add the radii of spheres. The model is validated by comparing physically relevant characteristics of real and simulated data, like the efficiency of exciton quenching, which is important for the generation of charges and their transport toward the electrodes.
Solution-processed intrinsic ZnO and Al doped ZnO (ZnO:Al) were spin coated on textured n-type c-Si wafer to replace the phosphorus doped amorphous silicon as the electron selective transport layer (ESTL) of the Si heterojunction (SHJ) solar cells. B
In this perspective, we explore the insights into the device physics of perovskite solar cells gained from modeling and simulation of these devices. We discuss a range of factors that influence the modeling of perovskite solar cells, including the ro
The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is supe
Recent technology breakthrough in spatial molecular profiling has enabled the comprehensive molecular characterizations of single cells while preserving spatial information. It provides new opportunities to delineate how cells from different origins
A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the optical and physical limiting factors of