ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental properties of five Kepler stars using global asteroseismic quantities and ground-based observations

271   0   0.0 ( 0 )
 نشر من قبل Orlagh Creevey
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. L. Creevey




اسأل ChatGPT حول البحث

We present an asteroseismic study of the solar-like stars KIC 11395018, KIC 10273246, KIC 10920273, KIC 10339342, and KIC 11234888 using short-cadence time series of more than eight months from the Kepler satellite. For four of these stars, we derive atmospheric parameters from spectra acquired with the Nordic Optical Telescope. The global seismic quantities (average large frequency separation and frequency of maximum power), combined with the atmospheric parameters, yield the mean density and surface gravity with precisions of 2% and ~0.03 dex, respectively. We also determine the radius, mass, and age with precisions of 2-5%, 7-11%, and ~35%, respectively, using grid-based analyses. We determine asteroseismic distances to these stars with a precision better than 10%, and constrain the stellar inclination for three of the stars. An Li abundance analysis yields an independent estimate of the age, but this is inconsistent with the asteroseismically determined age for one of the stars. We compare the results from five different grid-based analyses, and we find that they all provide radius and mass values to within 2.4sigma. The absence of a metallicity constraint when the average large frequency separation is measured with a precision of 1% biases the fitted radius and mass for the stars with non-solar metallicity (metal-rich KIC 11395018 and metal-poor KIC 10273246), while including a metallicity constraint reduces the uncertainties in both of these parameters by almost a factor of two. We found that including the average small frequency separation improves the determination of the age only for KIC 11395018 and KIC 11234888, and for the latter this improvement was due to the lack of strong atmospheric constraints. (Abridged).

قيم البحث

اقرأ أيضاً

We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based f ollow-up time-series data of selected promising Kepler pulsators. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
We present results of our 5-years-long program of ground-based spectroscopic and photometric observations of individual Kepler asteroseismic targets and the open clusters NGC6866 and NGC6811 from the Kepler field of view.We determined the effective t emperature, surface gravity, metallicity, the projected rotational velocity and the radial velocity of 119 Kepler asteroseismic targets for which we acquired high-resolution spectra. For many of these stars the derived atmospheric parameters agree with Teff, log g, and [Fe/H] from the Kepler Input Catalog (KIC) to within their error bars. Only for stars hotter than 7000K we notice significant differences between the effective temperature derived from spectroscopy and Teff given in the KIC. For 19 stars which we observed photoelectrically, we measured the interstellar reddening and we found it to be negligible. Finally, our discovery of the delta Sct and gamma Dor pulsating stars in the open cluster NGC6866 allowed us to discuss the frequency of the occurrence of gamma Dor stars in the open clusters of different age and metallicity and show that there are no correlations between these parameters.
The Kepler space mission, successfully launched in March 2009, is providing continuous, high-precision photometry of thousands of stars simultaneously. The uninterrupted time-series of stars of all known pulsation types are a precious source for aste roseismic studies. The Kepler data do not provide information on the physical parameters, such as effective temperature, surface gravity, metallicity, and vsini, which are crucial for successful asteroseismic modelling. Additional ground-based time-series data are needed to characterize mode parameters in several types of pulsating stars. Therefore, ground-based multi-colour photometry and mid/high-resolution spectroscopy are needed to complement the space data. We present ground-based activities within KASC on selected asteroseismic Kepler targets of several pulsation types. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes and high-resolution spectroscopy we derive a full set of near model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (nu_max) and the large frequency separation (Delta_nu). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to <~4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T_eff = 4600-6200 K of -22+/-32 K (with a scatter of 97K) and -58+/-31 K (with a scatter of 93 K), respectively. Finally we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modelling of individual oscillation frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا