ترغب بنشر مسار تعليمي؟ اضغط هنا

High Field (14Tesla) Magneto Transport of Sm/PrFeAsO

119   0   0.0 ( 0 )
 نشر من قبل Veer Awana Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report high field magneto transport of Sm/PrFeAsO. Below spin density wave transition (TSDW), the magneto-resistance (MR) of Sm/PrFeAsO is positive and increasing with decreasing temperature. The MR of SmFeAsO, is found 16%, whereas the same is 21.5% in case of PrFeAsO, at 2.5 K under applied magnetic field of 14 Tesla (T). In case of SmFeAsO, the variation of isothermal MR with field below 20 K is nonlinear at lower magnetic fields (< 2 Tesla) and the same is linear at moderately higher magnetic fields (H geq 3.5 T). On the other hand PrFeAsO shows almost linear MR at all temperatures below 20 K. The anomalous behavior of MR being exhibited in PrFeAsO is originated from Dirac cone states. The stronger interplay of Fe and Pr ordered moments is responsible for this distinct behavior. PrFeAsO also shows a hump in resistivity (R-T) with possible conduction band (FeAs) mediated ordering of Pr moments at around 12 K. However the same is absent in SmFeAsO even down to 2 K. Our results of high field magneto-transport of up to 14 Tesla brings about clear distinction between ground states of SmFeAsO and PrFeAsO.



قيم البحث

اقرأ أيضاً

The emerging Ni-based superconducting oxide thin films are rather intriguing to the entire condensed matter physics. Here we report some brief experimental results on transport measurements for a 14-nm-thick superconducting Nd0.8Sr0.2NiO2/SrTiO3 thin -film heterostructure with an onset transition temperature of ~9.5 K. Photoluminescence measurements reveal that there is negligible oxygen vacancy creation in the SrTiO3 substrate during thin-film deposition and post chemical reduction for the Nd0.8Sr0.2NiO2/SrTiO3 heterostructure. It was found that the critical current density of the Nd0.8Sr0.2NiO2/SrTiO3 thin-film heterostructure is relatively small, ~4x10^3 A/cm2. Although the surface steps of SrTiO3 substrates lead to an anisotropy for in-plane resistivity, the superconducting transition temperatures are almost the same. The out-of-plane magnetotransport measurements yield an upper critical field of ~11.4 T and an estimated in-plane Ginzburg-Landau coherence length of ~5.4 nm. High-field magnetotransport measurements up to 50 T reveal anisotropic critical fields at 1.8 K for three different measurement geometries and a complicated Hall effect. An electric field applied via the SrTiO3 substrate slightly varies the superconducting transition temperature. These experimental results could be useful for this rapidly developing field.
Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for sup erconductivity. Here, we investigate the normal transport of superconducting FeSe$_{1-x}$S$_x$ across a nematic phase transition using high magnetic fields up to 69 T to establish the temperature and field-dependencies. We find that the nematic state is an anomalous non-Fermi liquid, dominated by a linear resistivity at low temperatures that can transform into a Fermi liquid, depending on the composition $x$ and the impurity level. Near the nematic end point, we find an extended temperature regime with $T^{1.5}$ resistivity. The transverse magnetoresistance inside the nematic phase has as a $H^{1.55}$ dependence over a large magnetic field range and it displays an unusual peak at low temperatures inside the nematic phase. Our study reveals anomalous transport inside the nematic phase, driven by the subtle interplay between the changes in the electronic structure of a multi-band system and the unusual scattering processes affected by large magnetic fields and disorder
The discovery of iron-based superconductors caused great excitement, as they were the second high-$T_c$ materials after cuprates. Because of a peculiar topological feature of the electronic band structure, investigators quickly realized that the anti ferromagnetic parent phase harbors Dirac fermions. Here we show that the parent phase also exhibits the quantum Hall effect. We determined the longitudinal and Hall conductivities in CaFeAsF up to a magnetic field of 45 T and found that both approach zero above ~40 T. CaFeAsF has Dirac electrons and Schrodinger holes, and our analysis indicates that the Landau-level filling factor $ u$ = 2 for both at these high field strengths. We therefore argue that the $ u$ = 0 quantum Hall state emerges under these conditions. Our finding of quantum Hall physics at play in a topologically nontrivial parent phase adds a new dimension to research on iron-based superconductors and also provides a new material variety for the study of the $ u$ = 0 quantum Hall state.
141 - A.S. Sefat , L. Li , H.B. Cao 2015
Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-a rsenide material, whereby Neel temperature rises with small x, and then falls with additional x. Specifically, we find that Neel and structural transitions in BaFe2As2 (TN =Ts= 133 K) increase for x=0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x=0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.
106 - T. Urata , Y. Tanabe , K. K. Huynh 2015
In Fe pnictide (Pn) superconducting materials, neither Mn- nor Cr- doping to the Fe site induces superconductivity, even though hole carriers are generated. This is in strong contrast with the superconductivity appearing when holes are introduced by alkali metal substitution on the insulating blocking layers. We investigate in detail the effects of Mn doping on magneto-transport properties in Ba(Fe$_{1-x}$Mn$_x$As)$_2$ for elucidating the intrinsic reason. The negative Hall coefficient for $x$ = 0 estimated in the low magnetic field ($B$) regime gradually increases as $x$ increases, and its sign changes to a positive one at $x$ = 0.020. Hall resistivities as well as simultaneous interpretation using the magnetoconductivity tensor including both longitudinal and transverse transport components clarify that minority holes with high mobility are generated by the Mn doping via spin density wave (SDW) transition at low temperatures, while original majority electrons and holes residing in the parabolic-like Fermi surfaces (FSs) of the semimetallic Ba(FeAs)$_2$ are negligibly affected. Present results indicate that the mechanism of hole doping in Ba(Fe$_{1-x}$Mn$_x$As)$_2$ is greatly different from that of the other superconducting FePns family.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا