ترغب بنشر مسار تعليمي؟ اضغط هنا

The maximal density of product-free sets in Z/nZ

138   0   0.0 ( 0 )
 نشر من قبل Par M. Kurlberg
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the maximal size of product-free sets in Z/nZ. These are sets of residues for which there is no solution to ab == c (mod n) with a,b,c in the set. In a previous paper we constructed an infinite sequence of integers (n_i)_{i > 0} and product-free sets S_i in Z/n_iZ such that the density |S_i|/n_i tends to 1 as i tends to infinity, where |S_i|$ denotes the cardinality of S_i. Here we obtain matching, up to constants, upper and lower bounds on the maximal attainable density as n tends to infinity.



قيم البحث

اقرأ أيضاً

We consider sets of positive integers containing no sum of two elements in the set and also no product of two elements. We show that the upper density of such a set is strictly smaller than 1/2 and that this is best possible. Further, we also find th e maximal order for the density of such sets that are also periodic modulo some positive integer.
In this paper, we study product-free subsets of the free semigroup over a finite alphabet $A$. We prove that the maximum density of a product-free subset of the free semigroup over $A$, with respect to the natural measure that assigns a weight of $|A |^{-n}$ to each word of length $n$, is precisely $1/2$.
93 - Xiaoyu He , Jiaxi Nie , Sam Spiro 2021
Nielsen proved that the maximum number of maximal independent sets (MISs) of size $k$ in an $n$-vertex graph is asymptotic to $(n/k)^k$, with the extremal construction a disjoint union of $k$ cliques with sizes as close to $n/k$ as possible. In this paper we study how many MISs of size $k$ an $n$-vertex graph $G$ can have if $G$ does not contain a clique $K_t$. We prove for all fixed $k$ and $t$ that there exist such graphs with $n^{lfloorfrac{(t-2)k}{t-1}rfloor-o(1)}$ MISs of size $k$ by utilizing recent work of Gowers and B. Janzer on a generalization of the Ruzsa-Szemeredi problem. We prove that this bound is essentially best possible for triangle-free graphs when $kle 4$.
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
Hegyvari and Hennecart showed that if $B$ is a sufficiently large brick of a Heisenberg group, then the product set $Bcdot B$ contains many cosets of the center of the group. We give a new, robust proof of this theorem that extends to all extra speci al groups as well as to a large family of quasigroups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا