ترغب بنشر مسار تعليمي؟ اضغط هنا

Interactions of exotic particles with ordinary matter

144   0   0.0 ( 0 )
 نشر من قبل Sorina Lazanu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weakly interacting massive particles (WIMPs) and strangelets are two classes of exotic particles not yet discovered, and in agreement with theoretical scenarios most probably produced in different early stages of evolution of the Universe. Some peculiarities of their energy loss in the electronic and nuclear interactions with ordinary matter are investigated. For the direct detection of WIMPs the signals produced by the stopping of recoils in matter are used for their identification. The influence of the orientation of the recoil in respect to crystal axes for crystalline silicon (as material for detectors) is analysed as average quantities: energy loss, and as transient thermal effects. For strangelets, the mechanisms of picking-up neutrons during their penetration into matter and the effects on electronic and nuclear stopping are considered. The clarification of the aspects related to the stopping of these hypothetical particles in matter will permit a better interpretation of some experimental results and could also contribute to the search for new techniques or materials for their detection, if they exist.


قيم البحث

اقرأ أيضاً

Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte ractions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
We use observations of gas-rich dwarf galaxies to derive constraints on dark matter scattering with ordinary matter. We require that heating/cooling due to DM interacting with gas in the Leo T dwarf galaxy not exceed the ultra-low radiative cooling r ate of the gas. This enables us to set $(i)$ stronger bounds than all the previous literature on ultra-light hidden photon DM for nearly all of the mass range $10^{-23}lesssim m_mathrm{DM} lesssim 10^{-10}$ eV, $(ii)$ limits on sub-GeV millicharged DM which add to the constraints on the recent EDGES 21cm absorption anomaly, and $(iii)$ constraints on DM-baryon interactions directly at low relative velocities $v_mathrm{rel}sim 17$ km/s. Our study opens a new direction at using observations of gas-rich dwarf galaxies from previous, current and upcoming optical and 21cm surveys to probe physics beyond the standard model.
94 - I.M. Dremin 2019
It is argued that the cross sections of ultraperipheral interactions of heavy nuclei can become comparable in value to those of their ordinary hadronic interactions at high energies. Simple estimates of corresponding preasymptotic energy thresholds a re provided.The~method of equivalent photons is compared with the perturbative approach. The~situation at NICA/FAIR energies is discussed.
Astrophysical neutrinos travel long distances from their sources to the Earth traversing dark matter halos of clusters of galaxies and that of our own Milky Way. The interaction of neutrinos with dark matter may affect the flux of neutrinos. The rece nt multi-messenger observation of a high energy neutrino, IceCube-170922A, can give a robust upper bound $sigma /M_{dm} lesssim 5.1times 10^{-23} {rm cm}^2 /$GeV on the interaction between neutrino and dark matter at a neutrino energy of 290 TeV allowing 90% suppression. Combining the constraints from CMB and LSS at different neutrino energies, we can constrain models of dark matter-neutrino interactions.
We study interactions of unparticles ${cal {U}}$ of dimension $d_{cal {U}}$ due to Georgi with Standard Model (SM) fields through effective operators. The unparticles describe the low energy physics of a non-trivial scale invariant sector. Since unpa rticles come from beyond the SM physics, it is plausible that they transform as a singlet under the SM gauge group. This helps tremendously in limiting possible interactions. We analyze interactions of scalar ${cal {U}}$, vector ${cal {U}}$$^mu$ and spinor ${cal {U}}$$^s$ unparticles with SM fields and derivatives up to dimension four. Using these operators, we discuss different features of producing unparticles at $e^+ e^-$ collider and other phenomenologies. It is possible to distinguish different unparticles produced at $e^+e^-$ collider by looking at various distributions of production cross sections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا