ﻻ يوجد ملخص باللغة العربية
We demonstrate trapping and quantum state control of single Cesium atoms in a 532 nm wavelength bottle beam trap. The three dimensional trap is formed by crossing two unit charge vortex beams. Single atoms are loaded with 50% probability directly from a magneto-optical trap. We achieve a trapping lifetime of up to 6 s, and demonstrate fast Rabi oscillations with a coherence time of $T_2sim 43 pm 9rm ms$.
We demonstrate universal quantum control over chains of ions in a surface-electrode ion trap, including all the fundamental operations necessary to perform algorithms in a one-dimensional, nearest-neighbor quantum computing architecture. We realize b
We clarify the optimal conditions for the protocol of Raman sideband cooling (RSC) of a single atom confined with a tightly focused far-off-resonant optical dipole trap (optical tweezers). The protocol ultimately pursues cooling to a three-dimensiona
Precision sensing, and in particular high precision magnetometry, is a central goal of research into quantum technologies. For magnetometers, often trade-offs exist between sensitivity, spatial resolution, and frequency range. The precision, and thus
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well pot
Quantum effects, prevalent in the microscopic scale, generally elusive in macroscopic systems due to dissipation and decoherence. Quantum phenomena in large systems emerge only when particles are strongly correlated as in superconductors and superflu