ﻻ يوجد ملخص باللغة العربية
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well potential, in the axial direction. In this configuration a trapped particle can perform coherent oscillations between the two wells. The tunneling rate, which depends on the barrier height and width, can be adjusted at will by varying the potential difference applied to the trap electrodes. Most notably, tunneling rates in the range of kHz are achievable even with a trap size of the order of 100 microns.
We demonstrate a microfabricated surface-electrode ion trap that is applicable as a nanofriction emulator and studies of many-body dynamics of interacting systems. The trap enables both single-well and double-well trapping potentials in the radial di
We investigate the impact of a rotating wall potential on perpendicular laser cooling in a Penning ion trap. By including energy exchange with the rotating wall, we extend previous Doppler laser cooling theory and show that low perpendicular temperat
Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach eff
We describe a versatile planar Penning trap structure, which allows to dynamically modify the trapping conguration almost arbitrarily. The trap consists of 37 hexagonal electrodes, each with a circumcirle-diameter of 300 m, fabricated in a gold-on-sa
Two-dimensional crystals of ions stored in Penning traps are a leading platform for quantum simulation and sensing experiments. For small amplitudes, the out-of-plane motion of such crystals can be described by a discrete set of normal modes called t