ترغب بنشر مسار تعليمي؟ اضغط هنا

From a single- to a double-well Penning trap

254   0   0.0 ( 0 )
 نشر من قبل Giacomo Ciaramicoli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well potential, in the axial direction. In this configuration a trapped particle can perform coherent oscillations between the two wells. The tunneling rate, which depends on the barrier height and width, can be adjusted at will by varying the potential difference applied to the trap electrodes. Most notably, tunneling rates in the range of kHz are achievable even with a trap size of the order of 100 microns.

قيم البحث

اقرأ أيضاً

We demonstrate a microfabricated surface-electrode ion trap that is applicable as a nanofriction emulator and studies of many-body dynamics of interacting systems. The trap enables both single-well and double-well trapping potentials in the radial di rection, where the distance between the two potential wells can be adjusted by the applied RF voltage. In the double-well configuration, parallel ion strings can be formed, which is a suitable system for the emulation of the Frenkel-Kontorova (FK) model. We derive the condition under which the trap functions as a FK model emulator. The trap is designed so that the Coulomb interaction between two ion strings becomes significant. We report on the microfabrication process for such downsized trap electrodes and experimental results of single-well and double-well operation with calcium ions. With the trap demonstrated in this work we can create atomically accessible, self-assembled Coulomb systems with a wide tuning range of the corrugation parameter in the FK model. This makes it a promising system for quantum simulations, but also for the study of nanofriction in one and higher dimensional systems.
We investigate the impact of a rotating wall potential on perpendicular laser cooling in a Penning ion trap. By including energy exchange with the rotating wall, we extend previous Doppler laser cooling theory and show that low perpendicular temperat ures are more readily achieved with a rotating wall than without. Detailed numerical studies determine optimal operating parameters for producing low temperature, stable 2-dimensional crystals, important for quantum information processing experiments employing Penning traps.
Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach eff ect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more.
We describe a versatile planar Penning trap structure, which allows to dynamically modify the trapping conguration almost arbitrarily. The trap consists of 37 hexagonal electrodes, each with a circumcirle-diameter of 300 m, fabricated in a gold-on-sa pphire lithographic technique. Every hexagon can be addressed individually, thus shaping the electric potential. The fabrication of such a device with clean room methods is demonstrated. We illustrate the variability of the device by a detailed numerical simulation of a lateral and a vertical transport and we simulate trapping in racetrack and articial crystal congurations. The trap may be used for ions or electrons, as a versatile container for quantum optics and quantum information experiments.
Two-dimensional crystals of ions stored in Penning traps are a leading platform for quantum simulation and sensing experiments. For small amplitudes, the out-of-plane motion of such crystals can be described by a discrete set of normal modes called t he drumhead modes, which can be used to implement a range of quantum information protocols. However, experimental observations of crystals with Doppler-cooled and even near-ground-state-cooled drumhead modes reveal an unresolved drumhead mode spectrum. In this work, we establish in-plane thermal fluctuations in ion positions as a major contributor to the broadening of the drumhead mode spectrum. In the process, we demonstrate how the confining magnetic field leads to unconventional in-plane normal modes, whose average potential and kinetic energies are not equal. This property, in turn, has implications for the sampling procedure required to choose the in-plane initial conditions for molecular dynamics simulations. For current operating conditions of the NIST Penning trap, our study suggests that the two dimensional crystals produced in this trap undergo in-plane potential energy fluctuations of the order of $10$ mK. Our study therefore motivates the need for designing improved techniques to cool the in-plane degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا