ترغب بنشر مسار تعليمي؟ اضغط هنا

Modern observations of Hubbles first-discovered Cepheid in M31

108   0   0.0 ( 0 )
 نشر من قبل Matthew Templeton
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a modern ephemeris and modern light curve of the first-discovered Cepheid variable in M31, Edwin Hubbles M31-V1. Observers of the American Association of Variable Star Observers undertook these observations during the latter half of 2010. The observations were in support of an outreach program by the Space Telescope Science Institutes Hubble Heritage project, but the resulting data are the first concentrated observations of M31-V1 made in modern times. AAVSO observers obtained 214 V-band, Rc-band, and unfiltered observations from which a current ephemeris was derived. The ephemeris derived from these observations is JD(Max) = 2455430.5(+/-0.5) + 31.4 (+/-0.1) E. The period derived from the 2010 data are in agreement with the historic values of the period, but the single season of data precludes a more precise determination of the period or measurement of the period change using these data alone. However, using an ephemeris based upon the period derived by Baade and Swope we are able to fit all of the observed data acceptably well. Continued observations in the modern era will be very valuable in linking these modern data with data from the 1920s-30s and 1950s, and will enable us to measure period change in this historic Cepheid. In particular, we strongly encourage intensive observations of this star around predicted times of maximum to constrain the date of maximum to better than 0.5 days.



قيم البحث

اقرأ أيضاً

The ultra-long period Cepheids (ULPCs) are classical Cepheids with pulsation periods exceeding $approx 80$ days. The intrinsic brightness of ULPCs are ~1 to ~3 mag brighter than their shorter period counterparts. This makes them attractive in future distance scale work to derive distances beyond the limit set by the shorter period Cepheids. We have initiated a program to search for ULPCs in M31, using the single-band data taken from the Palomar Transient Factory, and identified eight possible candidates. In this work, we presented the VI-band follow-up observations of these eight candidates. Based on our VI-band light curves of these candidates and their locations in the color-magnitude diagram and the Period-Wesenheit diagram, we verify two candidates as being truly ULPCs. The six other candidates are most likely other kinds of long-period variables. With the two confirmed M31 ULPCs, we tested the applicability of ULPCs in distance scale work by deriving the distance modulus of M31. It was found to be $mu_{M31,ULPC}=24.30pm0.76$ mag. The large error in the derived distance modulus, together with the large intrinsic dispersion of the Period-Wesenheit (PW) relation and the small number of ULPCs in a given host galaxy, means that the question of the suitability of ULPCs as standard candles is still open. Further work is needed to enlarge the sample of calibrating ULPCs and reduce the intrinsic dispersion of the PW relation before re-considering ULPCs as suitable distance indicators.
110 - E. Plachy , A. Pal , A. Bodi 2020
We present the first analysis of Cepheid stars observed by the TESS space mission in Sectors 1 to 5. Our sample consists of 25 pulsators: ten fundamental mode, three overtone and two double-mode classical Cepheids, plus three Type II and seven anomal ous Cepheids. The targets were chosen from fields with different stellar densities, both from the Galactic field and from the Magellanic System. Three targets have 2-minute cadence light curves available by the TESS Science Processing Operations Center: for the rest, we prepared custom light curves from the full-frame images with our own differential photometric FITSH pipeline. Our main goal was to explore the potential and the limitations of TESS concerning the various subtypes of Cepheids. We detected many low amplitude features: weak modulation, period jitter, and timing variations due to light-time effect. We also report signs of non-radial modes and the first discovery of such a mode in an anomalous Cepheid, the overtone star XZ Cet, which we then confirmed with ground-based multicolor photometric measurements. We prepared a custom photometric solution to minimize saturation effects in the bright fundamental-mode classical Cepheid, $beta$ Dor with the lightkurve software, and we revealed strong evidence of cycle-to-cycle variations in the star. In several cases, however, fluctuations in the pulsation could not be distinguished from instrumental effects, such as contamination from nearby sources which also varies between sectors. Finally, we discuss how precise light curve shapes will be crucial not only for classification purposes but also to determine physical properties of these stars.
We present the largest Cepheid sample in M31 based on the complete Pan-STARRS1 survey of Andromeda (PAndromeda) in the $r_{mathrm{P1}}$ , $i_{mathrm{P1}}$ and $g_{mathrm{P1}}$ bands. We find 2686 Cepheids with 1662 fundamental mode Cepheids, 307 firs t-overtone Cepheids, 278 type II Cepheids and 439 Cepheids with undetermined Cepheid type. Using the method developed by Kodric et al. (2013) we identify Cepheids by using a three dimensional parameter space of Fourier parameters of the Cepheid light curves combined with a color cut and other selection criteria. This is an unbiased approach to identify Cepheids and results in a homogeneous Cepheid sample. The Period-Luminosity relations obtained for our sample have smaller dispersions than in our previous work. We find a broken slope that we previously observed with HST data in Kodric et al. (2015), albeit with a lower significance.
We report on the remarkable evolution in the light curve of a variable star discovered by Hubble (1926) in M33 and classified by him as a Cepheid. Early in the 20th century, the variable, designated as V19, exhibited a 54.7 day period, an intensity-w eighted mean B magnitude of 19.59+/-0.23 mag, and a B amplitude of 1.1 mag. Its position in the P-L plane was consistent with the relation derived by Hubble from a total of 35 variables. Modern observations by the DIRECT project show a dramatic change in the properties of V19: its mean B magnitude has risen to 19.08 +/- 0.05 mag and its B amplitude has decreased to less than 0.1 mag. V19 does not appear to be a classical (Population I) Cepheid variable at present, and its nature remains a mystery. It is not clear how frequent such objects are nor how often they could be mistaken for classical Cepheids.
Using the M31 PAndromeda Cepheid sample and the HST PHAT data we obtain the largest Cepheid sample in M31 with HST data in four bands. For our analysis we consider three samples: A very homogeneous sample of Cepheids based on the PAndromeda data, the mean magnitude corrected PAndromeda sample and a sample complementing the PAndromeda sample with Cepheids from literature. The latter results in the largest catalog with 522 fundamental mode (FM) Cepheids and 102 first overtone (FO) Cepheids with F160W and F110W data and 559 FM Cepheids and 111 FO Cepheids with F814W and F475W data. The obtained dispersion of the Period-Luminosity relations (PLRs) is very small (e.g. 0.138 mag in the F160W sample I PLR). We find no broken slope in the PLRs when analyzing our entire sample, but we do identify a subsample of Cepheids that causes the broken slope. However, this effect only shows when the number of this Cepheid type makes up a significant fraction of the total sample. We also analyze the sample selection effect on the Hubble constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا