ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of observational uncertainties on universal scaling of MHD turbulence

89   0   0.0 ( 0 )
 نشر من قبل Gogoberidze Grigol
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scaling exponents are the central quantitative prediction of theories of turbulence and in-situ satellite observations of the high Reynolds number solar wind flow have provided an extensive testbed of these. We propose a general, instrument independent method to estimate the uncertainty of velocity field fluctuations. We obtain the systematic shift that this uncertainty introduces into the observed spectral exponent. This shift is essential for the correct interpretation of observed scaling exponents. It is sufficient to explain the contradiction between spectral features of the Elsasser fields observed in the solar wind with both theoretical models and numerical simulations of Magnetohydrodynamic turbulence.

قيم البحث

اقرأ أيضاً

To understand the nonlinear dynamics of the Parker scenario for coronal heating, long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out. A loop is modeled as a box extended along the direction of the strong magnetic field $B_0$ in which the system is embedded. At the top and bottom plates, which represent the photosphere, velocity fields mimicking photospheric motions are imposed. We show that the nonlinear dynamics is described by different regimes of MHD anisotropic turbulence, with spectra characterized by intertial range power laws whose indexes range from Kolmogorov-like values ($sim 5/3$) up to $sim 3$. We briefly describe the bearing for coronal heating rates.
Asymptotic giant branch (AGB) stars with low initial mass (1 - 3 Msun) are responsible for the production of neutron-capture elements through the main s-process (main slow neutron capture process). The major neutron source is 13C(alpha, n)16O, which burns radiatively during the interpulse periods at about 8 keV and produces a rather low neutron density (10^7 n/cm^3). The second neutron source 22Ne(alpha, n)25Mg, partially activated during the convective thermal pulses when the energy reaches about 23 keV, gives rise to a small neutron exposure but a peaked neutron density (Nn(peak) > 10^11 n/cm^3). At metallicities close to solar, it does not substantially change the final s-process abundances, but mainly affects the isotopic ratios near s-path branchings sensitive to the neutron density. We examine the effect of the present uncertainties of the two neutron sources operating in AGB stars, as well as the competition with the 22Ne(alpha, gamma)26Mg reaction. The analysis is carried out on AGB the main-s process component (reproduced by an average between M(AGB; ini) = 1.5 and 3 Msun at half solar metallicity, see Arlandini et al. 1999), using a set of updated nucleosynthesis models. Major effects are seen close to the branching points. In particular, 13C(alpha, n)16O mainly affects 86Kr and 87Rb owing to the branching at 85Kr, while small variations are shown for heavy isotopes by decreasing or increasing our adopted rate by a factor of 2 - 3. By changing our 22Ne(alpha, n)25Mg rate within a factor of 2, a plausible reproduction of solar s-only isotopes is still obtained. We provide a general overview of the major consequences of these variations on the s-path. A complete description of each branching will be presented in Bisterzo et al., in preparation.
Long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out, within the framework of reduced magnetohydrodynamics (RMHD), to understand coronal heating driven by motion of field lines anchored in the photosphere. We unambiguously identify MHD anisotropic turbulence as the physical mechanism responsible for the transport of energy from the large scales, where energy is injected by photospheric motions, to the small scales, where it is dissipated. As the loop parameters vary different regimes of turbulence develop: strong turbulence is found for weak axial magnetic fields and long loops, leading to Kolmogorov-like spectra in the perpendicular direction, while weaker and weaker regimes (steeper spectral slopes of total energy) are found for strong axial magnetic fields and short loops. As a consequence we predict that the scaling of the heating rate with axial magnetic field intensity $B_0$, which depends on the spectral index of total energy for given loop parameters, must vary from $B_0^{3/2}$ for weak fields to $B_0^{2}$ for strong fields at a given aspect ratio. The predicted heating rate is within the lower range of observed active region and quiet Sun coronal energy losses.
Various models of solar subsurface stratification are tested in the global EULAG-MHD solver to simulate diverse regimes of near-surface convective transport. Sub- and superadiabacity are altered at the surface of the model ($ r > 0.95~R_{odot}$) to e ither suppress or enhance convective flow speeds in an effort to investigate the impact of the near-surface layer on global dynamics. A major consequence of increasing surface convection rates appears to be a significant alteration of the distribution of angular momentum, especially below the tachocline where the rotational frequency predominantly increases at higher latitudes. These hydrodynamic changes correspond to large shifts in the development of the current helicity in this stable layer ($r<0.72R_{odot}$), significantly altering its impact on the generation of poloidal and toroidal fields at the tachocline and below, acting as a major contributor towards transitions in the dynamo cycle. The enhanced near-surface flow speed manifests in a global shift of the toroidal field ($B_{phi}$) in the butterfly diagram - from a North-South symmetric pattern to a staggered anti-symmetric emergence.
MHD waves permeate the solar atmosphere and constitute potential coronal heating agents. Yet, the waves detected so far may be but a small subset of the true existing wave power. Detection is limited by instrumental constraints, but also by wave proc esses that localise the wave power in undetectable spatial scales. In this study we conduct 3D MHD simulations and forward modelling of standing transverse MHD waves in coronal loops with uniform and non-uniform temperature variation in the perpendicular cross-section. The observed signatures are largely dominated by the combination of the Kelvin-Helmholtz instability (KHI), resonant absorption and phase mixing. In the presence of a cross-loop temperature gradient we find that emission lines sensitive to the loop core catch different signatures than those more sensitive to the loop boundary and the surrounding corona, leading to an out-of-phase intensity modulation produced by the KHI mixing. Common signatures to all considered models include an intensity and loop width modulation at half the kink period, fine strand-like structure, a characteristic arrow-shaped structure in the Doppler maps, overall line broadening in time but particularly at the loop edges. For our model, most of these features can be captured with a spatial resolution of $0.33arcsec$ and spectral resolution of 25~km~s$^{-1}$, although severe over-estimation of the line width is obtained. Resonant absorption leads to a significant decrease of the observed kinetic energy from Doppler motions over time, which is not recovered by a corresponding increase in the line width from phase mixing and the KHI motions. We estimate this hidden wave energy to be a factor of $5-10$ of the observed value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا