ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronal Heating, Weak MHD Turbulence and Scaling Laws

110   0   0.0 ( 0 )
 نشر من قبل Antonio Franco Rappazzo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out, within the framework of reduced magnetohydrodynamics (RMHD), to understand coronal heating driven by motion of field lines anchored in the photosphere. We unambiguously identify MHD anisotropic turbulence as the physical mechanism responsible for the transport of energy from the large scales, where energy is injected by photospheric motions, to the small scales, where it is dissipated. As the loop parameters vary different regimes of turbulence develop: strong turbulence is found for weak axial magnetic fields and long loops, leading to Kolmogorov-like spectra in the perpendicular direction, while weaker and weaker regimes (steeper spectral slopes of total energy) are found for strong axial magnetic fields and short loops. As a consequence we predict that the scaling of the heating rate with axial magnetic field intensity $B_0$, which depends on the spectral index of total energy for given loop parameters, must vary from $B_0^{3/2}$ for weak fields to $B_0^{2}$ for strong fields at a given aspect ratio. The predicted heating rate is within the lower range of observed active region and quiet Sun coronal energy losses.



قيم البحث

اقرأ أيضاً

To understand the nonlinear dynamics of the Parker scenario for coronal heating, long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out. A loop is modeled as a box extended along the direction of the strong magnetic field $B_0$ in which the system is embedded. At the top and bottom plates, which represent the photosphere, velocity fields mimicking photospheric motions are imposed. We show that the nonlinear dynamics is described by different regimes of MHD anisotropic turbulence, with spectra characterized by intertial range power laws whose indexes range from Kolmogorov-like values ($sim 5/3$) up to $sim 3$. We briefly describe the bearing for coronal heating rates.
One of the greatest challenges in solar physics is understanding the heating of the Suns corona. Most theories for coronal heating postulate that free energy in the form of magnetic twist/stress is injected by the photosphere into the corona where th e free energy is converted into heat either through reconnection or wave dissipation. The magnetic helicity associated with the twist/stress, however, is expected to be conserved and appear in the corona. In previous work we showed that helicity associated with the small-scale twists undergoes an inverse cascade via stochastic reconnection in the corona, and ends up as the observed large-scale shear of filament channels. Our ``helicity condensation model accounts for both the formation of filament channels and the observed smooth, laminar structure of coronal loops. In this paper, we demonstrate, using helicity- and energy-conserving numerical simulations of a coronal system driven by photospheric motions, that the model also provides a natural mechanism for heating the corona. We show that the heat generated by the reconnection responsible for the helicity condensation process is sufficient to account for the observed coronal heating. We study the role that helicity injection plays in determining coronal heating and find that, crucially, the heating rate is only weakly dependent on the net helicity preference of the photospheric driving. Our calculations demonstrate that motions with 100% helicity preference are least efficient at heating the corona; those with 0% preference are most efficient. We discuss the physical origins of this result and its implications for the observed corona.
145 - A.F. Rappazzo 2007
The Parker or field line tangling model of coronal heating is studied comprehensively via long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy. In physical space this corresponds to a magnetic topology where magnetic field lines are barely entangled, nevertheless current sheets (corresponding to the original tangential discontinuities hypothesized by Parker) are continuously formed and dissipated. Current sheets are the result of the nonlinear cascade that transfers energy from the scale of convective motions ($sim 1,000 km$) down to the dissipative scales, where it is finally converted to heat and/or particle acceleration. Current sheets constitute the dissipative structure of the system, and the associated magnetic reconnection gives rise to impulsive ``bursty heating events at the small scales. This picture is consistent with the slender loops observed by state-of-the-art (E)UV and X-ray imagers which, although apparently quiescent, shine bright in these wavelengths with little evidence of entangled features. The different regimes of weak and strong MHD turbulence that develop, and their influence on coronal heating scalings, are shown to depend on the loop parameters, and this dependence is quantitatively characterized: weak turbulence regimes and steeper spectra occur in {it stronger loop fields} and lead to {it larger heating rates} than in weak field regions.
The magnetic topology and field line random walk properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, calle d Current Sheet Connected (CSC) regions, extended around them. CSC field line random walk is strongly anisotropic, with preferential diffusion along the current sheets in-plane length. CSC field line random walk properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind, and for solar moss formation are discussed.
The Parker or field line tangling model of coronal heating is investigated through long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photosp heric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy and characterized by current sheets elongated along the axial magnetic field. Increasing the value of the axial magnetic field different regimes of MHD turbulence develop with a bearing on coronal heating rates. In physical space magnetic field lines at the scale of convection cells appear only slightly bended in agreement with observations of large loops of current (E)UV and X-ray imagers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا