ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential antiferromagnetic fluctuations in hole-doped iron-pnictide superconductor Ba_{1-x}K_{x}Fe_{2}As_{2} studied by ^{75}As nuclear magnetic

162   0   0.0 ( 0 )
 نشر من قبل Masanori Hirano
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed ^{75}As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) on single crystalline Ba_{1-x}K_{x}Fe_{2}As_{2} for x = 0.27-1. ^{75}As nuclear quadruple resonance frequency ({ u}_{Q}) increases linearly with increasing x. The Knight shift K in normal state shows Pauli paramagnetic behavior with slight temperature T dependence. The value of K increases gradually with increasing x. By contrast, nuclear spin- lattice relaxation rate 1/T_{1} in normal state has a large T-dependence, which indicates existence of large antiferomagnetic (AF) spin fluctuations for all x. The T-dependence of 1/T_{1} shows a gap-like behavior below approximately 100 K for 0.6 < x < 0.9. These behaviors are well explained by the change of band structure with expansion of hole Fermi surfaces and shrink and disappearance of electron Fermi surfaces at Brillouin zone (BZ) with increasing x. The anisotropy of 1/T_{1}, represented by a ratio of 1/T_{1ab} to 1/T_{1c}, is always larger than 1 for all x, which indicates that the stripe-type AF fluctuations is dominant in this system. The K in superconducting (SC) state decreases, which corresponds to appearance of spin-singlet superconductivity. The T dependence of 1/T_{1} in SC state indicates multiple-SC-gap feature. A simple two gap model analysis shows that the larger superconducting gap gradually decreases with increasing x from 0.27 to 1 and smaller gap decreases rapidly and nearly vanishes for x > 0.6 where the electron pockets in BZ disappear.



قيم البحث

اقرأ أيضاً

404 - E. Sheveleva , B. Xu , P. Marsik 2020
The magnetic and superconducting properties of a series of underdoped $Ba_{1-x}Na_{x}Fe_{2}As_{2}$ (BNFA) single crystals with $0.19 leq xleq 0.34$ has been investigated with the complementary muon-spin-rotation ($mu$SR) and infrared spectroscopy tec hniques. The focus has been on the different antiferromagnetic states in the underdoped regime and their competition with superconductivity, especially for the ones with a tetragonal crystal structure and a so-called double-$Q$ magnetic order. Besides the collinear state with a spatially inhomogeneous spin-charge-density wave (i-SCDW) order at $x=0.24$ and $0.26$, that was previously identified in BNFA, we obtained evidence for an orthomagnetic state with a hedgehog-type spin vortex crystal (SVC) structure at $x=0.32$ and $0.34$. Whereas in the former i-SCDW state the infrared spectra show no sign of a superconducting response down to the lowest measured temperature of about 10K, in the SVC state there is a strong superconducting response similar to the one at optimum doping. The magnetic order is strongly suppressed here in the superconducting state and at $x=0.34$ there is even a partial re-entrance into a paramagnetic state at $T<<T_c$.
121 - Andreas Heimes , Roland Grein , 2010
The pairing mechanism in the iron-pnictide superconductors is still unknown. However, similarities to the cuprate high-temperature superconductors suggest that a similar mechanism may be at work. Recently, careful experimental studies of the spin exc itation spectrum revealed, like in the cuprates, a strong temperature dependence in the normal state and a resonance feature in the superconducting state. Motivated by these findings, we develop a model of electrons interacting with a temperature dependent magnetic excitation spectrum based on these experimental observations. We apply it to analyse angle resolved photoemission and tunnelling spectra in Ba{1-x}KxFe2As2. We reproduce in quantitative agreement with experiment a renormalisation of the quasiparticle dispersion both in the normal and the superconducting state, and the dependence of the quasiparticle linewidth on binding energy. We estimate the strength of the coupling between electronic and spin excitations. Our findings support the possibility of a pairing mechanism based dominantly on such a coupling.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate sta tic magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
We use scanning SQUID microscopy to investigate the behavior of vortices in the presence of twin boundaries in the pnictide superconductor Ba(Fe1-xCox)2As2. We show that the vortices avoid pinning on twin boundaries. Individual vortices move in a pre ferential way when manipulated with the SQUID: they tend to not cross a twin boundary, but rather to move parallel to it. This behavior can be explained by the observation of enhanced superfluid density on twin boundaries in Ba(Fe1-xCox)2As2. The observed repulsion from twin boundaries may be a mechanism for enhanced critical currents observed in twinned samples in pnictides and other superconductors.
We report on isofield magnetization curves obtained as a function of temperature in two single crystals of $Ba_{1-x}K_xFe_2As_2$ with superconducting transition temperature $T_c$=28K and 32.7 K. Results obtained for fields above 20 kOe show a well de fined rounding effect on the reversible region extending 1-3 K above $T_c(H)$ masking the transition. This rounding appears to be due to three-dimensional critical fluctuations, as the higher field curves obey a well know scaling law for this type of critical fluctuations. We also analysed the asymptotic behavior of $sqrt M$vs.T curves in the reversible region which probes the shape of the gap near $T_c(H)$. Results of the analysis suggests that phase fluctuations are important in $Ba_{1-x}K_xFe_2As_2$ which is consistent with nodes in the gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا