ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in the Cuprates: Deduction of Mechanism for D-Wave Pairing Through Analysis of ARPES

58   0   0.0 ( 0 )
 نشر من قبل Chandra Varma
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Eliashberg integral equations for d-wave superconductivity, two different functions $(alpha^2 F)_n(omega, theta)$ and $(alpha^2 F)_{p,d}(omega)$ determine, respectively, the normal and the pairing self-energies. We present a quantitative analysis of the high-resolution laser based ARPES data on the compound Bi-2212 to deduce the function$(alpha^2 F)_n(omega, theta)$. Besides its detailed $omega$ dependence, we find the remarkable result that this function is nearly independent of $theta$ between the ($pi,pi$)-direction and 25 degrees from it. Assuming that the same fluctuations determine both the normal and the pairing self-energy, we ask what theories give the function $(alpha^2 F)_{p,d}(omega)$ required for the d-wave pairing instability at high temperatures as well as the deduced $(alpha^2 F)_n(theta, omega)$. We show that the deduced $(alpha^2 F)_n(theta, omega)$ can only be obtained from Antiferromagnetic (AFM) fluctuations if their correlation length is smaller than a lattice constant. Using $(alpha^2 F)_{p,d}(omega)$ consistent with such a correlation length and the symmetry of matrix-elements scattering fermions off AFM fluctuations, we calculate $T_c$ an show that AFM fluctuations are excluded as the pairing mechanism for d-wave superconductivity in cuprates. We also consider the quantum-critical fluctuations derived microscopically as the fluctuations of the observed loop-current order discovered in the under-doped cuprates. We show that their frequency dependence and the momentum dependence of their matrix-elements to scatter fermions are consistent with the $theta$ and $omega$ dependence of the deduced $(alpha^2 F)_n(omega, theta)$. The pairing kernel $(alpha^2 F)_{p,d}(omega)$ calculated using the experimental values in the Eliashberg equation gives $d-wave$ instability at $T_c$ comparable to the experiments.

قيم البحث

اقرأ أيضاً

One of the puzzling characteristics of the pseudogap phase of high-$T_c$ cuprates is the nodal-antinodal dichotomy. While the nodal quasiparticles have a Fermi liquid behaviour, the antinodal ones show non-Fermi liquid features and an associated pseu dogap. Angle-resolved photoemission spectroscopy and electronic Raman scattering are two valuable tools which have shown universal features which are rather material-independent, and presumably intrinsic to the pseudogap phase. The doping and temperature dependence of the Fermi arcs and the pseudogap observed by photoemission near the antinode correlates with the non-Fermi liquid behaviour observed by Raman for the B$_{1g}$ mode. In contrast, and similar to the nodal quasiparticles detected by photoemission, the Raman B$_{2g}$ mode shows Fermi liquid features. We show that these two experiments can be analysed, in the context of the $t$-$J$ model, by self-energy effects in the proximity to a d-wave flux-phase order instability. This approach supports a crossover origin for the pseudogap, and a scenario of two competing phases. The B$_{2g}$ mode shows, in an underdoped case, a depletion at intermediate energy which has attracted a renewed interest. We study this depletion and discuss its origin and relation with the pseudogap.
The transition mechanism in high temperature cuprate superconductors is an outstanding puzzle. A previous suggestion on the role of non-linear local lattice instability modes on the microscopic pairing mechanism in high temperature cuprate supercondu ctors cite{Lee:JSNM09} is re-examined to provide a viable mechanism for superconductivity in these cuprates via an unusual lattice vibration in which an electron is predominantly interacting with a nonlinear $Q_2$ mode of the oxygen clusters in the CuO$_2$ planes. It is shown that the interaction has explicit d-wave symmetry and leads to an indirect coupling of d-wave symmetry between electrons. As a follow-up of cite{Lee:JSNM09}, in this paper, we report detailed derivation of the superconducting gap equation and numerical solutions for the transition temperature as inherently integrated into the so-called Extended Hubbard Model (EHM). A unique feature in the EHM is that the transition temperature has an inherent k-dependence. In addition, superconducting gap solutions are restrained to specific regions in the first Brillouin zone (1BZ). It is very feasible to expect that the EHM naturally inherits a huge parameter space in which experimentally measured results, such as the well-known superconducting dome and the phase diagram from electronic Raman scattering cite{Sacuto:RPP13} can be accommodated. The EHM model hence offers a viable venue to search for or confirm any signature in k-point-sensitive experimental measurements.
143 - Guo-meng Zhao 2010
Developing a theory of high-temperature superconductivity in copper oxides is one of the outstanding problems in physics. It is a challenge that has defeated theoretical physicists for more than twenty years. Attempts to understand this problem are h indered by the subtle interplay among a few mechanisms and the presence of several nearly degenerate and competing phases in these systems. Here we present some crucial experiments that place essential constraints on the pairing mechanism of high-temperature superconductivity. The observed unconventional oxygenisotope effects in cuprates have clearly shown strong electron-phonon interactions and the existence of polarons and/or bipolarons. Angle-resolved photoemission and tunneling spectra have provided direct evidence for strong coupling to multiple-phonon modes. In contrast, these spectra do not show strong coupling features expected for magnetic resonance modes. Angle-resolved photoemission spectra and the oxygen-isotope effect on the antiferromagnetic exchange energy J in undoped parent compounds consistently show that the polaron binding energy is about 2 eV, which is over one order of magnitude larger than J = 0.14 eV. The normal-state spin-susceptibility data of holedoped cuprates indicate that intersite bipolarons are the dominant charge carriers in the underdoped region while the component of Fermi-liquid-like polarons is dominant in the overdoped region. All the experiments to test the gap or order-parameter symmetry consistently demonstrate that the intrinsic gap (pairing) symmetry for the Fermi-liquid-like component is anisotropic s-wave and the order-parameter symmetry of the Bose-Einstein condensation of bipolarons is d-wave.
107 - Emilian M. Nica , Qimiao Si 2019
Recent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple $s$- and $d$-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings tha t go beyond the standard singlet functions through a matrix structure in the band/orbital space, and elucidate their naturalness in multiband systems. We consider the $stau_{3}$ multiorbital superconducting state for Fe-chalcogenide superconductors. This state, corresponding to a $d+d$ intra- and inter-band pairing, is shown to contrast with the more familiar $d +text{i}d$ state in a way analogous to how the B- triplet pairing phase of enhe superfluid differs from its A- phase counterpart. In addition, we construct an analogue of the $stau_{3}$ pairing for the heavy-fermion superconductor CeCu$_{2}$Si$_{2}$, using degrees-of-freedom that incorporate spin-orbit coupling. Our results lead to the proposition that $d$-wave superconductors in correlated multiband systems will generically have a fully-gapped Fermi surface when they are examined at sufficiently low energies.
86 - A. A. Kordyuk 2015
A term first coined by Mott back in 1968 a `pseudogap is the depletion of the electronic density of states at the Fermi level, and pseudogaps have been observed in many systems. However, since the discovery of the high temperature superconductors (HT SC) in 1986, the central role attributed to the pseudogap in these systems has meant that by many researchers now associate the term pseudogap exclusively with the HTSC phenomenon. Recently, the problem has got a lot of new attention with the rediscovery of two distinct energy scales (`two-gap scenario) and charge density waves patterns in the cuprates. Despite many excellent reviews on the pseudogap phenomenon in HTSC, published from its very discovery up to now, the mechanism of the pseudogap and its relation to superconductivity are still open questions. The present review represents a contribution dealing with the pseudogap, focusing on results from angle resolved photoemission spectroscopy (ARPES) and ends up with the conclusion that the pseudogap in cuprates is a complex phenomenon which includes at least three different `intertwined orders: spin and charge density waves and preformed pairs, which appears in different parts of the phase diagram. The density waves in cuprates are competing to superconductivity for the electronic states but, on the other hand, should drive the electronic structure to vicinity of Lifshitz transition, that could be a key similarity between the superconducting cuprates and iron based superconductors. One may also note that since the pseudogap in cuprates has multiple origins there is no need to recoin the term suggested by Mott.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا