ترغب بنشر مسار تعليمي؟ اضغط هنا

Trigger-disabling Acquisition System for Quantum Key Distribution failsafe against Self-blinding

74   0   0.0 ( 0 )
 نشر من قبل Marco Lucamarini
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern single-photon detectors based on avalanche photodiodes offer increasingly higher triggering speeds, thus fostering their use in several fields, prominently in the recent area of Quantum Key Distribution. To reduce the probability of an afterpulse, these detectors are usually equipped with a circuitry that disables the trigger for a certain time after a positive detection event, known as dead time. If the acquisition system connected to the detector is not properly designed, efficiency issues arise when the triggering rate is faster than the inverse of detectors dead-time. Moreover, when this happens with two or more detectors used in coincidence, a security risk called self-blinding can jeopardize the distribution of a secret quantum key. In this paper we introduce a trigger-disabling circuitry based on an FPGA-driven feedback loop, so to avoid the above-mentioned inconveniences. In the regime of single-photon-attenuated light, the electronics dynamically accept a trigger only after detectors complete recovery from dead-time. This technique proves useful to work with detectors at their maximum speed and to increase the security of a quantum key distribution setup.

قيم البحث

اقرأ أيضاً

Counterfactual quantum key distribution protocols allow two sides to establish a common secret key using an insecure channel and authenticated public communication. As opposed to many other quantum key distribution protocols, part of the quantum stat e used to establish each bit never leaves the transmitting side, which hinders some attacks. We show how to adapt detector blinding attacks to this setting. In blinding attacks, gated avalanche photodiode detectors are disabled or forced to activate using bright light pulses. We present two attacks that use this ability to compromise the security of counterfactual quantum key distribution. The first is a general attack but technologically demanding (the attacker must be able to reduce the channel loss by half). The second attack could be deployed with easily accessible technology and works for implementations where single photon sources are approximated by attenuated coherent states. The attack is a combination of a photon number splitting attack and the first blinding attack which could be deployed with easily accessible technology. The proposed attacks show counterfactual quantum key distribution is vulnerable to detector blinding and that experimental implementations should include explicit countermeasures against it.
In real-life implementations of quantum key distribution (QKD), the physical systems with unwanted imperfections would be exploited by an eavesdropper. Based on imperfections in the detectors, detector control attacks have been successfully launched on several QKD systems, and attracted widespread concerns. Here, we propose a robust countermeasure against these attacks just by introducing a variable attenuator in front of the detector. This countermeasure is not only effective against the attacks with blinding light, but also robust against the attacks without blinding light which are more concealed and threatening. Different from previous technical improvements, the single photon detector in our countermeasure model is treated as a blackbox, and the eavesdropper can be detected by statistics of the detection and error rates of the QKD system. Besides theoretical proof, the countermeasure is also supported by an experimental demonstration. Our countermeasure is general in sense that it is independent of the technical details of the detector, and can be easily applied to the existing QKD systems.
The work by Christandl, Konig and Renner [Phys. Rev. Lett. 102, 020504 (2009)] provides in particular the possibility of studying unconditional security in the finite-key regime for all discrete-variable protocols. We spell out this bound from their general formalism. Then we apply it to the study of a recently proposed protocol [Laing et al., Phys. Rev. A 82, 012304 (2010)]. This protocol is meaningful when the alignment of Alices and Bobs reference frames is not monitored and may vary with time. In this scenario, the notion of asymptotic key rate has hardly any operational meaning, because if one waits too long time, the average correlations are smeared out and no security can be inferred. Therefore, finite-key analysis is necessary to find the maximal achievable secret key rate and the corresponding optimal number of signals.
306 - Wei Li , Victor Zapatero , Hao Tan 2020
The fabrication of quantum key distribution (QKD) systems typically involves several parties, thus providing Eve with multiple opportunities to meddle with the devices. As a consequence, conventional hardware and/or software hacking attacks pose natu ral threats to the security of practical QKD. Fortunately, if the number of corrupted devices is limited, the security can be restored by using redundant apparatuses. Here, we report on the demonstration of a secure QKD setup with optical devices and classical post-processing units possibly controlled by an eavesdropper. We implement a 1.25 GHz chip-based measurement-device-independent QKD system secure against malicious devices on emph{both} the measurement and the users sides. The secret key rate reaches 137 bps over a 24 dB channel loss. Our setup, benefiting from high clock rate, miniaturized transmitters and a cost-effective structure, provides a promising solution for widespread applications requiring uncompromising communication security.
This is a brief comment on the Letter by Balygin and his coworkers [Laser Phys. Lett. 15, 095203 (2018)]. We point out an error that invalidates the Letters conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا