ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice dynamical analogies and differences between SrTiO3 and EuTiO3 revealed by phonon-dispersion relations and double-well potentials

44   0   0.0 ( 0 )
 نشر من قبل Annette Bussmann-Holder
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A comparative analysis of the structural phase transitions of EuTiO3 and SrTiO3 (at TS = 282 and 105 K, respectively) is made on the basis of phonon-dispersion and density functional calculations. The phase transition of EuTiO3 is predicted to arise from the softening of a transverse acoustic zone-boundary mode caused by the rotations of the TiO6 octahedra, as also found for the phase transition of SrTiO3. While the temperature dependence of the soft mode is similar in both compounds, their elastic properties differ drastically due to a large difference in the double-well potentials associated with the soft zone boundary-acoustic mode.

قيم البحث

اقرأ أيضاً

176 - Xu Liu , Defa Liu , Wenhao Zhang 2014
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much atten tion. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.
The phase purity and the lattice dynamics in bulk EuTiO3 were investigated both microscopically, using X-ray and neutron diffraction, 151-Eu-Mossbauer spectroscopy, and 151-Eu nuclear inelastic scattering, and macroscopically using calorimetry, reson ant ultrasound spectroscopy, and magnetometry. Furthermore, our investigations were corroborated by ab initio theoretical studies. The perovskite symmetry, Pm-3m, is unstable at the M- and R- points of the Brillouin zone. The lattice instabilities are lifted when the structure relaxes in one of the symmetries: I4/mcm, Imma, R-3c with relative relaxation energy around -25 meV. Intimate phase analysis confirmed phase purity of our ceramics. A prominent peak in the Eu specific density of phonon states at 11.5 meV can be modelled in all candidate symmetries. A stiffening on heating around room temperature is indicative of a phase transition similar to the one observed in SrTiO3, however, although previous studies reported the structural phase transition to tetragonal I4/mcm phase our detailed sample purity analysis and thorough structural studies using complementary techniques did not confirm a direct phase transition. Instead, in the same temperature range, Eu delocalization is observed which might explain the lattice dynamical instabilities.
The recently developed self consistent {it ab initio} lattice dynamical method (SCAILD) has been applied to the high temperature bcc phase of La and Th which are dynamically unstable at low temperatures. The bcc phase of these metals is found to be s tabilized by phonon-phonon interactions. The calculated high temperature phonon frequencies for La are found to be in good agreement with the corresponding experimental data.
Electron-phonon coupling (EPC) is one of the most common and fundamental interactions in solids. It not only dominates many basic dynamic processes like resistivity, thermal conductivity etc, but also provides the pairing glue in conventional superco nductors. But in high-temperature superconductors (HTSC), it is still controversial whether or not EPC is in favor of paring. Despite the controversies, many experiments have provided clear evidence for EPC in HTSC. In this paper, we briefly review EPC in cuprate and iron-based superconducting systems revealed by Raman scattering. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different HTSC systems and possible factors affecting the strength. The comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in HTSC.
The Holstein Model (HM) describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At high er densities, the phonons mediate collective superconducting (SC) and charge density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits, but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature $T_{rm cdw}$ for CDW order, and also uncover several novel features of diagonal long range order in the phase diagram, including a competition between charge patterns at momenta ${bf q}=(pi,pi)$ and ${bf q}=(0,pi)$ which lends insight into the relationship between Fermi surface nesting and the wavevector at which charge order occurs. We also demonstrate SC order at half-filling in situations where nonzero bandwidth sufficiently suppresses $T_{rm cdw}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا