ﻻ يوجد ملخص باللغة العربية
Motivated by experiments observing self-organization of cold atoms in optical cavities we investigate the collective dynamics of the associated nonequilibrium Dicke model. The model displays a rich semiclassical phase diagram of long time attractors including distinct superradiant fixed points, bistable and multistable coexistence phases and regimes of persistent oscillations. We explore the intrinsic timescales for reaching these asymptotic states and discuss the implications for finite duration experiments. On the basis of a semiclassical analysis of the effective Dicke model we find that sweep measurements over 200ms may be required in order to access the asymptotic regime. We briefly comment on the corrections that may arise due to quantum fluctuations and states outside of the effective two-level Dicke model description.
In this paper we study nonequilibrium dynamics of one dimensional Bose gas from the general perspective of dynamics of integrable systems. After outlining and critically reviewing methods based on inverse scattering transform, intertwining operators,
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the exte
Describing finite-temperature nonequilibrium dynamics of interacting many-particle systems is a notoriously challenging problem in quantum many-body physics. Here we provide an exact solution to this problem for a system of strongly interacting boson
The coupled nonequilibrium dynamics of electrons and phonons in monolayer MoS2 is investigated by combining first-principles calculations of the electron-phonon and phonon-phonon interaction with the time-dependent Boltzmann equation. Strict phase-sp
Recent advances in optical studies of condensed matter have led to the emergence of phenomena that have conventionally been studied in the realm of quantum optics. These studies have not only deepened our understanding of light-matter interactions bu