ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Standard Grain Properties, Dark Gas Reservoir, and Extended Submillimeter Excess, Probed by Herschel in the Large Magellanic Cloud

58   0   0.0 ( 0 )
 نشر من قبل Fr\\'ed\\'eric Galliano
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: In this paper, we perform detailed modelling of the Spitzer and Herschel observations of the LMC, in order to: (i) systematically study the uncertainties and biases affecting dust mass estimates; and to (ii) explore the peculiar ISM properties of the LMC. Methods: To achieve these goals, we have modelled the spatially resolved SEDs with two alternate grain compositions, to study the impact of different submillimetre opacities on the dust mass. We have rigorously propagated the observational errors (noise and calibration) through the entire fitting process, in order to derive consistent parameter uncertainties. Results: First, we show that using the integrated SED leads to underestimating the dust mass by ~50 % compared to the value obtained with sufficient spatial resolution, for the region we studied. This might be the case, in general, for unresolved galaxies. Second, we show that Milky Way type grains produce higher gas-to-dust mass ratios than what seems possible according to the element abundances in the LMC. A spatial analysis shows that this dilemma is the result of an exceptional property: the grains of the LMC have on average a larger intrinsic submm opacity (emissivity index beta~1.7 and opacity kappa_abs(160 microns)=1.6 m2/kg) than those of the Galaxy. By studying the spatial distribution of the gas-to-dust mass ratio, we are able to constrain the fraction of unseen gas mass between ~10, and ~100 % and show that it is not sufficient to explain the gas-to-dust mass ratio obtained with Milky Way type grains. Finally, we confirm the detection of a 500 microns extended emission excess with an average relative amplitude of ~15 %, varying up to 40 %. This excess anticorrelates well with the dust mass surface density. Although we do not know the origin of this excess, we show that it is unlikely the result of very cold dust, or CMB fluctuations.

قيم البحث

اقرأ أيضاً

The bar of the Large Magellanic Cloud (LMC) is one of the prominent, but controversial feature regarding its location with respect to the disk of the LMC. In order to study the relative location of the bar with respect to the disk, we present the hig h resolution map of the structure across the LMC. We used the reddening corrected mean magnitudes ($I_0$) of red clump (RC) stars from the OGLE III catalogue to map the relative variation in distance (vertical structure) or variation in RC population across the LMC. The bar does not appear as an identifiable vertical feature in the map, as there is no difference in $I_0$ values between the bar and the disk regions. We conclude that the LMC bar is very much part of the disk, located in the plane of the disk (within 0.02 mag) and it is not a separate component. We identify warps or variation in RC population with increase in radial distance. %The structure map also suggests a %warp or a different RC population in the eastern part of the LMC disk.
We compare atomic gas, molecular gas, and the recent star formation rate (SFR) inferred from H-alpha in the Small Magellanic Cloud (SMC). By using infrared dust emission and local dust-to-gas ratios, we construct a map of molecular gas that is indepe ndent of CO emission. This allows us to disentangle conversion factor effects from the impact of metallicity on the formation and star formation efficiency of molecular gas. On scales of 200 pc to 1 kpc we find a characteristic molecular gas depletion time of ~1.6 Gyr, similar to that observed in the molecule-rich parts of large spiral galaxies on similar spatial scales. This depletion time shortens on much larger scales to ~0.6 Gyr because of the presence of a diffuse H-alpha component, and lengthens on much smaller scales to ~7.5 Gyr because the H-alpha and H2 distributions differ in detail. We estimate the systematic uncertainties in our measurement to be a factor of 2-3. We suggest that the impact of metallicity on the physics of star formation in molecular gas has at most this magnitude. The relation between SFR and neutral (H2+HI) gas surface density is steep, with a power-law index ~2.2+/-0.1, similar to that observed in the outer disks of large spiral galaxies. At a fixed total gas surface density the SMC has a 5-10 times lower molecular gas fraction (and star formation rate) than large spiral galaxies. We explore the ability of the recent models by Krumholz et al. (2009) and Ostriker et al. (2010) to reproduce our observations. We find that to explain our data at all spatial scales requires a low fraction of cold, gravitationally-bound gas in the SMC. We explore a combined model that incorporates both large scale thermal and dynamical equilibrium and cloud-scale photodissociation region structure and find that it reproduces our data well, as well as predicting a fraction of cold atomic gas very similar to that observed in the SMC.
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our rec ent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the TP-AGB, for which we compute spectra and colors. Then we compare our modeled colors in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduces several colors in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We conclude that the complete set of observed NIR and MIR colors are best reproduced by small grains, with sizes between $sim$0.035 and $sim$0.12~$mu$m, rather than by large grains between $sim0.2$ and $0.7$~$mu$m. The inability of large grains to reproduce NIR and MIR colors seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.
We present a near- to mid-infrared point source catalog of 5 photometric bands at 3.2, 7, 11, 15 and 24 um for a 10 deg2 area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera (IRC) onboard the AKARI satellite. To cover the survey area the observations were carried out at 3 separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10-sigma limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15 and 24 um, respectively. The photometric accuracy is estimated to be about 0.1 mag at 3.2 um and 0.06--0.07 mag in the other bands. The position accuracy is 0.3 at 3.2, 7 and 11um and 1.0 at 15 and 24 um. The sensitivities at 3.2, 7, and 24 um are roughly comparable to those of the Spitzer SAGE LMC point source catalog, while the AKARI catalog provides the data at 11 and 15 um, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the detected sources, while the Catalog only includes the sources that have a counterpart in the Spitzer SAGE point source catalog. The Archive contains about 650,000, 140,000, 97,000, 43,000, and 52,000 sources at 3.2, 7, 11, 15, and 24 um, respectively. Based on the catalog, we discuss the luminosity functions at each band, the color-color diagram, and the color-magnitude diagram using the 3.2, 7, and 11 um band data. Stars without circumstellar envelopes, dusty C-rich and O-rich stars, young stellar objects, and background galaxies are located at distinct regions in the diagrams, suggesting that the present catalog is useful for the classification of objects towards the LMC.
We present a new optical sample of three Supernova Remnants and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud(LMC). These objects were originally selected using deep H$alpha$, [SII] and [OIII] narrow-band imaging. Most of the ne wly found objects are located in less dense regions, near or around the edges of the LMCs main body. Together with previously suggested MCSNR J0541-6659, we confirm the SNR nature for two additional new objects: MCSNR J0522-6740 and MCSNRJ0542-7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [SII]/H$alpha$ a emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509-6402 to be a special example of the remnant of a possible Type Ia Supernova which is situated some 2$^circ$ ($sim 1.75$kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of $sim 2$. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very rarefied environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا