ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of old very metal rich stars in the solar neighbourhood

342   0   0.0 ( 0 )
 نشر من قبل Marina Trevisan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A sample of mostly old metal-rich dwarf and turn-off stars with high eccentricity and low maximum height above the Galactic plane has been identified. From their kinematics, it was suggested that the inner disk is their most probable birthplace. Their chemical imprints may therefore reveal important information about the formation and evolution of the still poorly understood inner disk. To probe the formation history of these stellar populations, a detailed analysis of a sample of very metal-rich stars is carried out. We derive the metallicities, abundances of alpha elements, ages, and Galactic orbits. The analysis of 71 metal-rich stars is based on optical high-resolution echelle spectra obtained with the FEROS spectrograph at the ESO 1.52-m Telescope at La Silla, Chile. The metallicities and abundances of C, O, Mg, Si, Ca, and Ti were derived based on LTE detailed analysis, employing the MARCS model atmospheres. We confirm the high metallicity of these stars reaching up to [Fe I/H]~0.58, and the sample of metal-rich dwarfs can be kinematically subclassified in samples of thick disk, thin disk, and intermediate stellar populations. All sample stars show solar alpha-Fe ratios, and most of them are old and still quite metal rich. The orbits suggest that the thin disk, thick disk and intermediate populations were formed at Galactocentric distances of ~8 kpc, ~6 kpc, and ~7 kpc, respectively. The mean maximum height of the thick disk subsample of Z_max~380 pc, is lower than for typical thick disk stars. A comparison of alpha-element abundances of the sample stars with bulge stars shows that the oxygen is compatible with a bulge or inner thick disk origin. Our results suggest that models of radial mixing and dynamical effects of the bar and bar/spiral arms might explain the presence of these old metal-rich dwarf stars in the solar neighbourhood.



قيم البحث

اقرأ أيضاً

Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of consi derable interest. We demonstrate here that stars with iron abundances [Fe/H] < -2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the Calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <= -2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] < -2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] <= -4. Of these, one was already known to be `ultra metal-poor, one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H]= -4.0, rather than the published [Fe/H]=-3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our S/N. RAVE observations are on-going and should prove to be a rich source of bright, easily studied, very metal-poor stars.
We report the abundances of C, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Sm in 25 solar-type stars in the solar neighbourhood, and their correlations with ages, kinematics, and orbital parameters. The spectrosc opic analysis, based high resolution and high S/N ratio data, was differential to the Sun and applied to atomic line EWs and to C and C2 spectral synthesis. We performed a statistical study using a tree clustering analysis, searching for groups of stars sharing similar abundance patterns. We derived Teff, log(g), and [Fe/H] with errors of 30 K, 0.13 dex, and 0.05 dex, respectively. The average error in [X/Fe] is 0.06 dex. Ages were derived from theoretical HR diagrams and memberships in kinematical moving groups. We identified four stellar groups: with over-solar abundances (<[X/H]> = +0.26 dex), under-solar abundances (<[X/H]> = -0.24 dex), and intermediate values (<[X/H]> = -0.06 and +0.06 dex) but with distinct chemical patterns. Stars sharing solar metallicity, age, and Galactic orbit possibly have non-solar abundance, an effect either of chemical heterogeneity in their natal clouds or migration. A trend of [Cu/Fe] with [Ba/Fe] seems to exist, in agreement with previous claims in the literature, and maybe also of [Sm/Fe] with [Ba/Fe]. No such correlation involving C, Na, Mn, and Zn is observed. [Mg/Fe], [Sc/Fe], and [Ti/Fe] increase with age. [Mn/Fe] and [Cu/Fe] first increase towards younger stars up to the solar age, and then decrease, a result we interpret as possibly related to time-varying yields of SN Ia and the weak s-process. [Sr/Fe], [Y/Fe], [Sr/Mg], [Y/Mg], [Sr/Zn], and [Y/Zn] linearly increase towards younger stars. [Zr/Fe], [Ce/Fe], [Nd/Fe], [Ba/Mg], [Ba/Zn], and [Sr,Y,Ba/Sm] increase but only for stars younger than the Sun. The steepest negative age relation is due to [Ba/Fe], but only for stars younger than the Sun.
88 - Kohei Hattori 2018
We report the discovery of 30 stars with extreme space velocities ($>$ 480 km/s) in the Gaia-DR2 archive. These stars are a subset of 1743 stars with high-precision parallax, large tangential velocity ($v_{tan}>$ 300 km/s), and measured line-of-sight velocity in DR2. By tracing the orbits of the stars back in time, we find at least one of them is consistent with having been ejected by the supermassive black hole at the Galactic Center. Another star has an orbit that passed near the Large Magellanic Cloud (LMC) about 200 Myr ago. Unlike previously discovered blue hypervelocity stars, our sample is metal-poor (-1.5 $<$ [Fe/H] $<$ -1.0) and quite old ($>$ 1 Gyr). We discuss possible mechanisms for accelerating old stars to such extreme velocities. The high observed space density of this population, relative to potential acceleration mechanisms, implies that these stars are probably bound to the Milky Way (MW). If they are bound, the discovery of this population would require a local escape speed of around $sim$ 600 km/s and consequently imply a virial mass of $M_{200} sim 1.4 times 10^{12} M_odot$ for the MW.
In the last three decades several hundred nearby members of young stellar moving groups (MGs) have been identified, but there has been less systematic effort to quantify or characterise young stars that do not belong to previously identified MGs. Usi ng a kinematically unbiased sample of 225 lithium-rich stars within 100 pc, we find that only $50 pm 10$ per cent of young ($lesssim 125$ Myr), low-mass ($0.5<M/M_{odot}<1.0$) stars, are kinematically associated with known MGs. Whilst we find some evidence that six of the non-MG stars may be connected with the Lower Centaurus-Crux association, the rest form a kinematically hotter population, much more broadly dispersed in velocity, and with no obvious concentrations in space. The mass distributions of the MG members and non-MG stars is similar, but the non-MG stars may be older on average. We briefly discuss several explanations for the origin of the non-MG population.
Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar systems counterparts are the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide robust numbers f or the incidence of debris discs around FGK stars in the solar neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE photometry, were obtained. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the DEBRIS consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars, is complete for F stars, almost complete for G stars and contains a substantial number of K stars to draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type 0.26 (6 objects with excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49 K stars), the fraction for all three spectral types together being 0.22 (23 out of 105 stars). Uncertainties corresponding to a 95% confidence level are given in the text for all these numbers. The medians of the upper limits of L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K); the lowest values being around 4.0E-7. The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا