ترغب بنشر مسار تعليمي؟ اضغط هنا

A kinematically hot population of young stars in the solar neighbourhood

107   0   0.0 ( 0 )
 نشر من قبل Alex Binks Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last three decades several hundred nearby members of young stellar moving groups (MGs) have been identified, but there has been less systematic effort to quantify or characterise young stars that do not belong to previously identified MGs. Using a kinematically unbiased sample of 225 lithium-rich stars within 100 pc, we find that only $50 pm 10$ per cent of young ($lesssim 125$ Myr), low-mass ($0.5<M/M_{odot}<1.0$) stars, are kinematically associated with known MGs. Whilst we find some evidence that six of the non-MG stars may be connected with the Lower Centaurus-Crux association, the rest form a kinematically hotter population, much more broadly dispersed in velocity, and with no obvious concentrations in space. The mass distributions of the MG members and non-MG stars is similar, but the non-MG stars may be older on average. We briefly discuss several explanations for the origin of the non-MG population.

قيم البحث

اقرأ أيضاً

We study the three dimensional arrangement of young stars in the solar neighbourhood using the second release of the Gaia mission (Gaia DR2) and we provide a new, original view of the spatial configuration of the star forming regions within 500 pc fr om the Sun. By smoothing the star distribution through a gaussian filter, we construct three dimensional density maps for early-type stars (upper-main sequence, UMS) and pre-main sequence (PMS) sources. The PMS and the UMS samples are selected through a combination of photometric and astrometric criteria. A side product of the analysis is a three dimensional, G-band extinction map, which we use to correct our colour-magnitude diagram for extinction and reddening. Both density maps show three prominent structures, Scorpius-Centaurus, Orion, and Vela. The PMS map shows a plethora of lower mass star forming regions, such as Taurus, Perseus, Cepheus, Cassiopeia, and Lacerta, which are less visible in the UMS map, due to the lack of large numbers of bright, early-type stars. We report the finding of a candidate new open cluster towards $l, b sim 218.5^{circ}, -2^{circ}$, which could be related to the Orion star forming complex. We estimate ages for the PMS sample and we study the distribution of PMS stars as a function of their age. We find that younger stars cluster in dense, compact clumps, and are surrounded by older sources, whose distribution is instead more diffuse. The youngest groups that we find are mainly located in Scorpius-Centaurus, Orion, Vela, and Taurus. Cepheus, Cassiopeia, and Lacerta are instead more evolved and less numerous. Finally, we find that the three dimensional density maps show no evidence for the existence of the ring-like structure which is usually referred to as the Gould Belt.
We derive age constraints for 1639 red giants in the APOKASC sample for which seismic parameters from Kepler, as well as effective temperatures, metallicities and [alpha/Fe] values from APOGEE DR12 are available. We investigate the relation between a ge and chemical abundances for these stars, using a simple and robust approach to obtain ages. We first derive stellar masses using standard seismic scaling relations, then determine the maximum possible age for each star as function of its mass and metallicity, independently of its evolutionary stage. While the overall trend between maximum age and chemical abundances is a declining fraction of young stars with increasing [alpha/Fe], at least 14 out of 241 stars with [alpha/Fe]>0.13 are younger than 6 Gyr. Five stars with [alpha/Fe]>0.2 have ages below 4 Gyr. We examine the effect of modifications in the standard seismic scaling relations, as well as the effect of very low helium fractions, but these changes are not enough to make these stars as old as usually expected for alpha-rich stars (i.e., ages greater than 8-9 Gyr). Such unusual alpha-rich young stars have also been detected by other surveys, but defy simple explanations in a galaxy evolution context.
We present a self-consistent, absolute isochronal age scale for young (< 200 Myr), nearby (< 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the tau^2 maximum-li kelihood fitting statistic of Naylor & Jeffries in the M_V, V-J colour-magnitude diagram. The final adopted ages for the groups are: 149+51-19 Myr for the AB Dor moving group, 24+/-3 Myr for the {beta} Pic moving group (BPMG), 45+11-7 Myr for the Carina association, 42+6-4 Myr for the Columba association, 11+/-3 Myr for the {eta} Cha cluster, 45+/-4 Myr for the Tucana-Horologium moving group (Tuc-Hor), 10+/-3 Myr for the TW Hya association, and 22+4-3 Myr for the 32 Ori group. At this stage we are uncomfortable assigning a final, unambiguous age to the Argus association as our membership list for the association appears to suffer from a high level of contamination, and therefore it remains unclear whether these stars represent a single population of coeval stars. Our isochronal ages for both the BPMG and Tuc-Hor are consistent with recent lithium depletion boundary (LDB) ages, which unlike isochronal ages, are relatively insensitive to the choice of low-mass evolutionary models. This consistency between the isochronal and LDB ages instills confidence that our self-consistent, absolute age scale for young, nearby moving groups is robust, and hence we suggest that these ages be adopted for future studies of these groups. Software implementing the methods described in this study is available from http: //www.astro.ex.ac.uk/people/timn/tau-squared/.
We present a kinematical study of 314 RR~Lyrae stars in the solar neighbourhood using the publicly available photometric, spectroscopic, and {it Gaia} DR2 astrometric data to explore their distribution in the Milky Way. We report an overdensity of 22 RR~Lyrae stars in the solar neighbourhood at a pericenter distance of between 5--9,kpc from the Galactic center. Their orbital parameters and their chemistry indicate that these 22 variables share the kinematics and the [Fe/H] values of the Galactic disc, with an average metallicity and tangential velocity of [Fe/H]=$-0.60$,dex and $v_{theta} = 241$,km,s$^{-1}$, respectively. From the distribution of the Galactocentric spherical velocity components, we find that these 22 disc-like RR~Lyrae variables are not consistent with the {it Gaia} Sausage ({it Gaia}-Enceladus), unlike almost half of the local RR~Lyrae stars. Chemical information from the literature shows that the majority of the selected pericenter peak RR~Lyrae variables are $alpha$-poor, a property shared by typically much younger stars in the thin disc. Using the available photometry we rule out a possible misclassification with the known classical and anomalous Cepheids. The similar kinematic, chemical, and pulsation properties of these disc RR~Lyrae stars suggest they share a common origin. In contrast, we find the RR~Lyrae stars associated with the {it Gaia}-Enceladus based on their kinematics and chemical composition show a considerable metallicity spread in the old population ($sim$~1,dex).
We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M_bol~ -5.2 mag. The resulting LF however shows two tails at lower and higher luminosities more extended than those previously found, indicati ng that AGB carbon stars with Solar metallicity may reach M_bol~-6.0 mag. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found. The Galactic spatial distribution and velocity components of the N-, SC- and J-type stars are very similar, while about 30 % of the R-hot stars in the sample are located at distances larger than ~ 500 pc from the Galactic Plane, and show a significant drift with respect to the local standard of rest. The LF derived for N- and SC-type in the Solar neighbourhood fully agrees with the expected luminosity of stars of 1.5-3 M_o on the AGB. On a theoretical basis, the existence of an extended low luminosity tail would require a contribution of extrinsic low mass carbon stars, while the high luminosity one would imply that stars with mass up to ~5 Mo may become carbon star on the AGB. J-type stars not only differ significantly in their chemical composition with respect to the N- and SC-types but also in their LF, which reinforces the idea that these carbon stars belong to a dvifferent type whose origin is still unknown. The derived luminosities of R-hot stars make these stars unlikely to be in the red-clump as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity, indicate that most of the N-, SC- and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا