ﻻ يوجد ملخص باللغة العربية
We demonstrate coherent control of cyclotron resonance (CR) in a two-dimensional electron gas (2DEG). We use a sequence of terahertz pulses to control the amplitude of CR oscillations in an arbitrary fashion via phase-dependent coherent interactions. We observe a self-interaction effect, where the 2DEG interacts with the terahertz field emitted by itself within the decoherence time, resulting in a revival and collapse of quantum coherence. These observations are accurately describable using {em single-particle} optical Bloch equations, showing no signatures of electron-electron interactions, which verifies the validity of Kohns theorem for CR in the coherent regime.
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the
We calculate the density of states of a two dimensional electron gas located at the interface of a GaAlAs/GaAs heterojunction. The disorder potential which is generally created by a single doping layer behind a spacer, is here enhanced by the presenc
Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished th
Using scanning gate microscopy (SGM), we probe the scattering between a beam of electrons and a two-dimensional electron gas (2DEG) as a function of the beams injection energy, and distance from the injection point. At low injection energies, we find
We report the experimental realization of a non-galvanic, primary thermometer capable of measuring the electron temperature of a two-dimensional electron gas with negligible thermal load. Such a thermometer consists of a quantum dot whose temperature