ﻻ يوجد ملخص باللغة العربية
Using scanning gate microscopy (SGM), we probe the scattering between a beam of electrons and a two-dimensional electron gas (2DEG) as a function of the beams injection energy, and distance from the injection point. At low injection energies, we find electrons in the beam scatter by small-angles, as has been previously observed. At high injection energies, we find a surprising result: placing the SGM tip where it back-scatters electrons increases the differential conductance through the system. This effect is explained by a non-equilibrium distribution of electrons in a localized region of 2DEG near the injection point. Our data indicate that the spatial extent of this highly non-equilibrium distribution is within ~1 micrometer of the injection point. We approximate the non-equilibrium region as having an effective temperature that depends linearly upon injection energy.
We have studied experimentally and theoretically the influence of electron-electron collisions on the propagation of electron beams in a two-dimensional electron gas for excess injection energies ranging from zero up to the Fermi energy. We find that
Using the method developed in a recent paper (Euro. Phys. J. B 92.8 (2019): 1-28) we consider $1/f$ noise in two-dimensional electron gas (2DEG). The electron coherence length of the system is considered as a basic parameter for discretizing the spac
At low energy, electrons in doped graphene sheets behave like massless Dirac fermions with a Fermi velocity which does not depend on carrier density. Here we show that modulating a two-dimensional electron gas with a long-wavelength periodic potentia
In a high mobility two-dimensional electron gas (2DEG) in a GaAs/AlGaAs quantum well we observe a strong magnetoresistance. In lowering the electron density the magnetoresistance gets more pronounced and reaches values of more than 300%. We observe t
We compute the single-particle states of a two-dimensional electron gas confined to the surface of a cylinder immersed in a magnetic field. The envelope-function equation has been solved exactly for both an homogeneous and a periodically modulated ma