ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Sterile Neutrinos with a Radioactive Source at Daya Bay

95   0   0.0 ( 0 )
 نشر من قبل Karsten M. Heeger
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The far site detector complex of the Daya Bay reactor experiment is proposed as a location to search for sterile neutrinos with > eV mass. Antineutrinos from a 500 kCi 144Ce-144Pr beta-decay source (DeltaQ=2.996 MeV) would be detected by four identical 20-ton antineutrino targets. The site layout allows flexible source placement; several specific source locations are discussed. In one year, the 3+1 sterile neutrino hypothesis can be tested at essentially the full suggested range of the parameters Delta m^2_{new} and sin^22theta_{new} (90% C.L.). The backgrounds from six nuclear reactors at >1.6 km distance are shown to be manageable. Advantages of performing the experiment at the Daya Bay far site are described.

قيم البحث

اقرأ أيضاً

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiments unique configuration of multiple baselines from six 2.9~GW$_{rm th}$ nuclear reactors to six a ntineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{rm -3}~{rm eV}^{2} < |Delta m_{41}^{2}| < 0.3~{rm eV}^{2}$ range. The relative spectral distortion due to electron antineutrino disappearance was found to be consistent with that of the three-flavor oscillation model. The derived limits on $sin^22theta_{14}$ cover the $10^{-3}~{rm eV}^{2} lesssim |Delta m^{2}_{41}| lesssim 0.1~{rm eV}^{2}$ region, which was largely unexplored.
This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eigh t antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the $2times10^{-4} lesssim |Delta m^{2}_{41}| lesssim 0.3$ eV$^{2}$ mass range. The resulting limits on $sin^{2}2theta_{14}$ are improved by approximately a factor of 2 over previous results and constitute the most stringent constraints to date in the $|Delta m^{2}_{41}| lesssim 0.2$ eV$^{2}$ region.
We report an improved measurement of the neutrino mixing angle $theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $sin^22theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW$_{rm th}$ were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is $0.944pm 0.007({rm stat.}) pm 0.003({rm syst.})$. An analysis of the relative rates in six detectors finds $sin^22theta_{13}=0.089pm 0.010({rm stat.})pm0.005({rm syst.})$ in a three-neutrino framework.
We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data co llected from October 2012 to November 2013 resulted in a total exposure of 6.9$times$10$^5$ GW$_{rm th}$-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six $^{241}$Am-$^{13}$C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of $sin^{2}2theta_{13}$ and $|Delta m^2_{ee}|$ were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave $sin^{2}2theta_{13} = 0.084pm0.005$ and $|Delta m^{2}_{ee}|= (2.42pm0.11) times 10^{-3}$ eV$^2$ in the three-neutrino framework.
A search for a time-varying $bar{ u}_{e}$ signal was performed with 621 days of data acquired by the Daya Bay Reactor Neutrino Experiment over 704 calendar days. The time spectrum of the measured $overline{ u}_e$ flux normalized to its prediction was analyzed with a Lomb-Scargle periodogram, which yielded no significant signal for periods ranging from 2 hours to nearly 2 years. The normalized time spectrum was also fit for a sidereal modulation under the Standard Model extension (SME) framework to search for Lorentz and CPT violation (LV-CPTV). Limits were obtained for all six flavor pairs $bar{e}bar{mu}$, $bar{e}bar{tau}$, $bar{mu}bar{tau}$, $bar{e}bar{e},bar{mu}bar{mu}$ and $bar{tau}bar{tau}$ by fitting them one at a time, constituting the first experimental constraints on the latter three. Daya Bays high statistics and unique layout of multiple directions from three pairs of reactors to three experimental halls allowed the simultaneous constraint of individual SME LV-CPTV coefficients without assuming others contribute negligibly, a first for a neutrino experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا