ﻻ يوجد ملخص باللغة العربية
A search for a time-varying $bar{ u}_{e}$ signal was performed with 621 days of data acquired by the Daya Bay Reactor Neutrino Experiment over 704 calendar days. The time spectrum of the measured $overline{ u}_e$ flux normalized to its prediction was analyzed with a Lomb-Scargle periodogram, which yielded no significant signal for periods ranging from 2 hours to nearly 2 years. The normalized time spectrum was also fit for a sidereal modulation under the Standard Model extension (SME) framework to search for Lorentz and CPT violation (LV-CPTV). Limits were obtained for all six flavor pairs $bar{e}bar{mu}$, $bar{e}bar{tau}$, $bar{mu}bar{tau}$, $bar{e}bar{e},bar{mu}bar{mu}$ and $bar{tau}bar{tau}$ by fitting them one at a time, constituting the first experimental constraints on the latter three. Daya Bays high statistics and unique layout of multiple directions from three pairs of reactors to three experimental halls allowed the simultaneous constraint of individual SME LV-CPTV coefficients without assuming others contribute negligibly, a first for a neutrino experiment.
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle $theta_{13}$ with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW$_{rm th}$ reactors were detected in six antineutrino detec
We report an improved measurement of the neutrino mixing angle $theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $sin^22theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six
The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared difference
A measurement of the energy dependence of antineutrino disappearance at the Daya Bay Reactor Neutrino Experiment is reported. Electron antineutrinos ($overline{ u}_{e}$) from six $2.9$ GW$_{rm th}$ reactors were detected with six detectors deployed i
A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiments unique configuration of multiple baselines from six 2.9~GW$_{rm th}$ nuclear reactors to six a