ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling conductivity in composites of attractive colloids

62   0   0.0 ( 0 )
 نشر من قبل Claudio Grimaldi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In conductor-insulator nanocomposites in which conducting fillers are dispersed in an insulating matrix the electrical connectedness is established by interparticle tunneling or hopping processes. These systems are intrinsically non-percolative and a coherent description of the functional dependence of the conductivity $sigma$ on the filler properties, and in particular of the conductor-insulator transition, requires going beyond the usual continuum percolation approach by relaxing the constraint of a fixed connectivity distance. In this article we consider dispersions of conducting spherical particles which are connected to all others by tunneling conductances and which are subjected to an effective attractive square well potential. We show that the conductor-insulator transition at low contents $phi$ of the conducting fillers does not determine the behavior of $sigma$ at larger concentrations, in striking contrast to what is predicted by percolation theory. In particular, we find that at low $phi$ the conductivity is governed almost entirely by the stickiness of the attraction, while at larger $phi$ values $sigma$ depends mainly on the depth of the potential well. As a consequence, by varying the range and depth of the potential while keeping the stickiness fixed, composites with similar conductor-insulator transitions may display conductivity variations of several orders of magnitude at intermediate and large $phi$ values. By using a recently developed effective medium theory and the critical path approximation we explain this behavior in terms of dominant tunneling processes which involve interparticle distances spanning different regions of the square-well fluid structure as $phi$ is varied. Our predictions could be tested in experiments by changing the potential profile with different depletants in polymer nanocomposites.


قيم البحث

اقرأ أيضاً

142 - A. Gerber , I. Kishon , D. Bartov 2016
We analyze the temperature dependence of conductivity in thick granular ferromagnetic compounds NiSiO2 and in thin weakly coupled films of Fe, Ni and Py in vicinity of metal-insulator transition. Development of resistivity minimum followed by a logar ithmic variation of conductivity at lower temperatures is attributed to granular structure of compounds and thin films fabricated by conventional deposition techniques. Resistivity minimum is identified as a transition between temperature dependent intra-granular metallic conductance and thermally activated inter-granular tunneling.
Graphene/(Poly)vinyl alcohol (PVA) composite film with thickness $60 mu m$ were synthesized by solidification of a PVA solution comprising of dispersed graphene nanosheets. The close proximity of the graphene sheets enables the fluctuation induced tu nneling of electrons to occur from one sheet to another. The dielectric data show that the present system can be simulated to a parallel resistance-capacitor network. The high frequency exponent of the frequency variation of the ac conductivity indicates that the charge carriers move in a two-dimensional space. The sample preparation technique will be helpful for synthesizing flexible conductors.
Low temperature properties of glasses are derived within a generalized tunneling model, considering the motion of charged particles on a closed path in a double-well potential. The presence of a magnetic induction field B violates the time reversal i nvariance due to the Aharonov-Bohm phase, and leads to flux periodic energy levels. At low temperature, this effect is shown to be strongly enhanced by dipole-dipole and elastic interactions between tunneling systems and becomes measurable. Thus, the recently observed strong sensitivity of the electric permittivity to weak magnetic fields can be explained. In addition, superimposed oscillations as a function of the magnetic field are predicted.
Disordered thin films close to the superconducting-insulating phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be re vealed for example by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks that do not fit the BCS prediction. To explain these observations, we consider the effect of finite-range superconducting fluctuations on the density of states, focusing on the insulating side of the SIT. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks, even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks observed, for example, in the pseudo gap regime of high-temperature superconductors.
We report on two sub-band transport in double gate SiO$_2$-Si-SiO$_2$ quantum well with 14 nm thick Si layer at 270 mK. At symmetric well potential the experimental sub-band spacing changes monotonically from 2.3 to 0.3 meV when the total density is adjusted by gate voltages between $sim 0.7times 10^{16}$ $-3.0times 10^{16}$ m$^{-2}$. The conductivity is mapped in large gate bias window and it shows strong non-monotonic features. At symmetric well potential and high density these features are addressed to sub-band wave function delocalization in the quantization direction and to different disorder of the top and bottom interfaces of the Si well. Close to bi-layer/second sub-band threshold the non-monotonic behavior is interpreted to arise from scattering from localized band tail electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا