ﻻ يوجد ملخص باللغة العربية
We analyze the temperature dependence of conductivity in thick granular ferromagnetic compounds NiSiO2 and in thin weakly coupled films of Fe, Ni and Py in vicinity of metal-insulator transition. Development of resistivity minimum followed by a logarithmic variation of conductivity at lower temperatures is attributed to granular structure of compounds and thin films fabricated by conventional deposition techniques. Resistivity minimum is identified as a transition between temperature dependent intra-granular metallic conductance and thermally activated inter-granular tunneling.
The temperature dependent resistance $R$($T$) of polycrystalline ferromagnetic CoFeB thin films of varying thickness are analyzed considering various electrical scattering processes. We observe a resistance minimum in $R$($T$) curves below $simeq$ 29
The origin of the resistivity minimum observed in strongly phase separated manganites has been investigated in single crystalline thin films of LPCMO (x~0.42, y~0.40). The antiferromagnetic/charge ordered insulator (AFM/COI)-ferromagnetic metal (FMM)
A modeling approach, based on an analytical solution of the semiclassical multi-subband Boltzmann transport equation, is presented to study resistivity scaling in metallic thin films and nanowires due to grain boundary and surface roughness scatterin
Disordered thin films close to the superconducting-insulating phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be re
In a recent work by Ji Seop Oh et al., BaBiO3(001) thin films were grown on SrTiO3 by Pulsed Laser Deposition. It was argued that the films are BiO2-terminated from the modelling of angle-resolved photoemission spectroscopy experiments. The authors c