ﻻ يوجد ملخص باللغة العربية
The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation (BEC) and superfluidity, which have been tested experimentally in a variety of different systems. When bosons are interacting, disorder can destroy condensation leading to a so-called Bose glass. This phase has been very elusive to experiments due to the absence of any broken symmetry and of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (Br-doped dichloro-tetrakis-thiourea-Nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand-canonical ensemble; Br-doping introduces disorder in the hoppings and interaction strengths, leading to localization of the bosons into a Bose glass down to zero field, where it acquires the nature of an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the BEC (corresponding to a magnetically ordered phase) is marked by a novel, universal exponent governing the scaling on the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents the first, quantitative account of the universal features of disordered bosons in the grand-canonical ensemble.
We confirm the presence of a mean-field Bose glass in 2D quasicrystalline Bose-Hubbard models. We focus on two models where the aperiodic component is present in different parts of the problem. First, we consider a 2D generalisation of the Aubry-Andr
In this paper we investigate the quantum phase transition from magnetic Bose glass to magnetic Bose-Einstein condensation induced by a magnetic field in NiCl2.4SC(NH2)2 (dichloro-tetrakis-thiourea-Nickel, or DTN), doped with Br (Br-DTN) or site dilut
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle
The competition between spin glass, ferromagnetism and Kondo effect is analysed here in a Kondo lattice model with an inter-site random coupling $J_{ij}$ between the localized magnetic moments given by a generalization of the Mattis model which repre
The relaxations of conductivity have been studied in the glassy regime of a strongly disordered two-dimensional electron system in Si after a temporary change of carrier density during the waiting time t_w. Two types of response have been observed: a