ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacancy Induced Splitting of Dirac Nodal Point in Graphene

509   0   0.0 ( 0 )
 نشر من قبل Qinwei Shi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the vacancy effects on quasiparticle band structure of graphene near the Dirac point. It is found that each Dirac nodal point splits into two new nodal points due to the coherent scattering among vacancies. The splitting energy between the two nodal points is proportional to the square root of vacancy concentration. In addition, an extra dispersionless impurity band of zero energy due to particle-hole symmetry is found. Our theory offers an excellent explanation to the recent experiments.



قيم البحث

اقرأ أيضاً

86 - B. Feng , H. Zhou , Y. Feng 2019
Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is 3 x3-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K) points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the 3x3-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.
Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether and to what degree their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical co-dopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition, with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac fermions in otherwise semiconducting graphene-like nanoribbons.
Multi-layer epitaxial graphene (MEG) is investigated using far infrared (FIR) transmission experiments in the different limits of low magnetic fields and high temperatures. The cyclotron-resonance like absorption is observed at low temperature in mag netic fields below 50 mT, allowing thus to probe the nearest vicinity of the Dirac point and to estimate the conductivity in nearly undoped graphene. The carrier mobility is found to exceed 250,000 cm$^2$/(V.s). In the limit of high temperatures, the well-defined Landau level (LL) quantization is observed up to room temperature at magnetic fields below 1 T, a phenomenon unique in solid state systems. A negligible increase in the width of the cyclotron resonance lines with increasing temperature indicates that no important scattering mechanism is thermally activated, supporting recent expectations of high room-temperature mobilities in graphene.
202 - L. Schweitzer 2009
The electronic properties of non-interacting particles moving on a two-dimensional bricklayer lattice are investigated numerically. In particular, the influence of disorder in form of a spatially varying random magnetic flux is studied. In addition, a strong perpendicular constant magnetic field $B$ is considered. The density of states $rho(E)$ goes to zero for $Eto 0$ as in the ordered system, but with a much steeper slope. This happens for both cases: at the Dirac point for B=0 and at the center of the central Landau band for finite $B$. Close to the Dirac point, the dependence of $rho(E)$ on the system size, on the disorder strength, and on the constant magnetic flux density is analyzed and fitted to an analytical expression proposed previously in connection with the thermal quantum Hall effect. Additional short-range on-site disorder completely replenishes the indentation in the density of states at the Dirac point.
We revisit the effect of local interactions on the quadratic band touching (QBT) of Bernal stacked bilayer graphene models using renormalization group (RG) arguments and quantum Monte Carlo simulations of the Hubbard model. We present an RG argument which predicts, contrary to previous studies, that weak interactions do not flow to strong coupling even if the free dispersion has a QBT. Instead they generate a linear term in the dispersion, which causes the interactions to flow back to weak coupling. Consistent with this RG scenario, in unbiased quantum Monte Carlo simulations of the Hubbard model we find compelling evidence that antiferromagnetism turns on at a finite $U/t$, despite the $U=0$ hopping problem having a QBT. The onset of antiferromagnetism takes place at a continuous transition which is consistent with a dynamical critical exponent $z=1$ as expected for 2+1 d Gross-Neveu criticality. We conclude that generically in models of bilayer graphene, even if the free dispersion has a QBT, small local interactions generate a Dirac phase with no symmetry breaking and that there is a finite-coupling transition out of this phase to a symmetry-broken state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا