ترغب بنشر مسار تعليمي؟ اضغط هنا

Observing the Multiverse with Cosmic Wakes

109   0   0.0 ( 0 )
 نشر من قبل Thomas S. Levi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matthew Kleban




اسأل ChatGPT حول البحث

Current theories of the origin of the Universe, including string theory, predict the existence of a multiverse containing many bubble universes. These bubble universes will generically collide, and collisions with ours produce cosmic wakes that enter our Hubble volume, appear as unusually symmetric disks in the cosmic microwave background (CMB) and disturb large scale structure (LSS). There is preliminary observational evidence consistent with one or more of these disturbances on our sky. However, other sources can produce similar features in the CMB temperature map and so additional signals are needed to verify their extra-universal origin. Here we find, for the first time, the detailed three-dimensional shape and CMB temperature and polarization signals of the cosmic wake of a bubble collision in the early universe consistent with current observations. The predicted polarization pattern has distinctive features that when correlated with the corresponding temperature pattern are a unique and striking signal of a bubble collision. These features represent the first verifiable prediction of the multiverse paradigm and might be detected by current experiments such as Planck and future CMB polarization missions. A detection of a bubble collision would confirm the existence of the Multiverse, provide compelling evidence for the string theory landscape, and sharpen our picture of the Universe and its origins.



قيم البحث

اقرأ أيضاً

Primordial black holes (PBHs) are a viable candidate for dark matter if the PBH masses are in the currently unconstrained sublunar mass range. We revisit the possibility that PBHs were produced by nucleation of false vacuum bubbles during inflation. We show that this scenario can produce a population of PBHs that simultaneously accounts for all dark matter, explains the candidate event in Subaru Hyper Suprime-Cam (HSC) data, and contains both heavy black holes as observed by LIGO and very heavy seeds of supermassive black holes. We demonstrate with numerical studies that future observations of HSC, as well as other optical surveys, such as LSST, will be able to provide a definitive test for this generic PBH formation mechanism if it is the dominant source of dark matter.
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on $f(R)$ and {it Generalized Dilaton} models of modified gravity. This is highly complimentary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General-Relativity + $Lambda$CDM scenario occurs at $ksim1 h mbox{Mpc}^{-1}$. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parameterization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing $xi_{pm}$ quantity. Confronted against the cosmic shear data, we reject the $f(R)$ ${ |f_{R_0}|=10^{-4}, n=1}$ model with more than 99.9% confidence interval (CI) when assuming a $Lambda$CDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2eV, the model is disfavoured with at least 94% CI in all different combinations studied. Constraints on the ${ |f_{R_0}|=10^{-4}, n=2}$ model are weaker, but nevertheless disfavoured with at least 89% CI. We identify several specific combinations of neutrino mass, baryon feedback and $f(R)$ or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.
We use a combination of observational data in order to reconstruct the free function of f(T) gravity in a model-independent manner. Starting from the data-driven determined dark-energy equation-of-state parameter we are able to reconstruct the f(T) f orm. The obtained function is consistent with the standard {Lambda}CDM cosmology within 1{sigma} confidence level, however the best-fit value experiences oscillatory features. We parametrise it with a sinusoidal function with only one extra parameter comparing to {Lambda}CDM paradigm, which is a small oscillatory deviation from it, close to the best-fit curve, and inside the 1{sigma} reconstructed region. Similar oscillatory dark-energy scenarios are known to be in good agreement with observational data, nevertheless this is the first time that such a behavior is proposed for f(T) gravity. Finally, since the reconstruction procedure is completely model-independent, the obtained data-driven reconstructed f(T) form could release the tensions between {Lambda}CDM estimations and local measurements, such as the H0 and {sigma}8 ones.
We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high den sity, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particles are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale morphological environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.
295 - Yingjie Yang , Yungui Gong 2020
Inflation predicts that the Universe is spatially flat. The Planck 2018 measurements of the cosmic microwave background anisotropy favour a spatially closed universe at more than 2$sigma$ confidence level. We use model independent methods to study th e issue of cosmic curvature. The method reconstructs the Hubble parameter $H(z)$ from cosmic chronometers data with the Gaussian process method. The distance modulus is then calculated with the reconstructed function $H(z)$ and fitted by type Ia supernovae data. Combining the cosmic chronometers and type Ia supernovae data, we obtain $Omega_{k0}h^2=0.102pm 0.066$ which is consistent with a spatially flat universe at the 2$sigma$ confidence level. By adding the redshift space distortions data to the type Ia supernovae data with a proposed novel model independent method, we obtain $Omega_{k0}h^2=0.117^{+0.058}_{-0.045}$ and no deviation from $Lambda$CDM model is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا