ﻻ يوجد ملخص باللغة العربية
Inflation predicts that the Universe is spatially flat. The Planck 2018 measurements of the cosmic microwave background anisotropy favour a spatially closed universe at more than 2$sigma$ confidence level. We use model independent methods to study the issue of cosmic curvature. The method reconstructs the Hubble parameter $H(z)$ from cosmic chronometers data with the Gaussian process method. The distance modulus is then calculated with the reconstructed function $H(z)$ and fitted by type Ia supernovae data. Combining the cosmic chronometers and type Ia supernovae data, we obtain $Omega_{k0}h^2=0.102pm 0.066$ which is consistent with a spatially flat universe at the 2$sigma$ confidence level. By adding the redshift space distortions data to the type Ia supernovae data with a proposed novel model independent method, we obtain $Omega_{k0}h^2=0.117^{+0.058}_{-0.045}$ and no deviation from $Lambda$CDM model is found.
The question of whether Cosmic Microwave Background (CMB) temperature and polarization data from Planck favor a spatially closed Universe with curvature parameter $Omega_K<0$ has been the subject of recent intense discussions. Attempts to break the g
We study observational constraints on the cosmographic functions up to the fourth derivative of the scale factor with respect to cosmic time, i.e., the so-called snap function, using the non-parametric method of Gaussian Processes. As observational d
The production rate of primordial black holes is often calculated by considering a nearly Gaussian distribution of cosmological perturbations, and assuming that black holes will form in regions where the amplitude of such perturbations exceeds a cert
The concordance of the $Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements ap
This paper aims to put constraints on the transition redshift $z_t$, which determines the onset of cosmic acceleration, in cosmological-model independent frameworks. In order to do that, we use the non-parametric Gaussian Process method with $H(z)$ a