ترغب بنشر مسار تعليمي؟ اضغط هنا

VUV Brillouin scattering from superpolished vitreous silica

174   0   0.0 ( 0 )
 نشر من قبل Benoit Ruffl\\'e
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A previous inelastic UV scattering experiment on silica glass is reproduced using a high grade superpolished sample. In the pristine sample condition, surface scattering is not observable compared to Rayleigh scattering from the bulk. However, exposure to a fluence of the order of 100 J/cm$^2$ at photon energies slightly below the electronic gap generates observable surface damage. This occurs after a few hours illumination with the monochromatic spectrometer beam. No anomaly in the Brillouin linewidth was found up to an excitation energy of 7.8 eV.



قيم البحث

اقرأ أيضاً

We computer model a free-standing vitreous silica bilayer which has recently been synthesized and characterized experimentally in landmark work. Here we model the bilayer using a computer assembly procedure that starts from a single layer of amorphou s graphene, generated using a bond switching algorithm from an initially crystalline graphene structure. Next each bond is decorated with an oxygen atom and the carbon atoms are relabeled as silicon. This monolayer can be now thought of as a two dimensional network of corner sharing triangles. Next each triangle is made into a tetrahedron, by raising the silicon atom above each triangle and adding an additional singly coordinated oxygen atom at the apex. The final step is to mirror reflect this layer to form a second layer and then attach the two layers together to form the bilayer. We show that this vitreous silica bilayer has the additional macroscopic degrees of freedom to easily form a network of identical corner sharing tetrahedra if there is a symmetry plane through the center of the bilayer going through the layer of oxygen ions that join the upper and lower layers. This has the consequence that the upper rings lie exactly above the lower rings, which are tilted in general. The assumption of a network of perfect corner sharing tetrahedra leads to a range of possible densities that we have previously characterized in three dimensional zeolites as a flexibility window. Finally, using a realistic potential, we have relaxed the bilayer to determine the density, and other structural characteristics such as the Si-Si pair distribution functions and the Si-O-Si bond angle distribution, which are compared to the experimental results obtained by direct imaging.
The position and strength of the boson peak in silica glass vary considerably with temperature $T$. Such variations cannot be explained solely with changes in the Debye energy. New Brillouin scattering measurements are presented which allow determini ng the $T$-dependence of unrelaxed acoustic velocities. Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural evolution of silica with $T$ and to set the energy scale for the soft potentials.
Silica is known as the archetypal strong liquid, exhibiting an Arrhenius viscosity curve with a high glass transition temperature and constant activation energy. However, given the ideally isostatic nature of the silica network, the presence of even a small concentration of defects can lead to a significant decrease in both the glass transition temperature and activation energy for viscous flow. To understand the impact of trace level dopants on the viscosity of silica, we measure the viscosity-temperature curves for seven silica glass samples having different impurities, including four natural and three synthetic samples. Depending on the type of dopant, the glass transition temperature can vary by nearly 300 K. A common crossover is found for all viscosity curves around ~2200-2500 K, which we attribute to a change of the transport mechanism in the melt from being dominated by intrinsic defects at high temperature to dopant-induced defects at low temperatures.
86 - R. DellAnna 1998
We report a molecular dynamics simulation study of the sound waves in vitreous silica in the mesoscopic exchanged momentum range. The calculated dynamical structure factors are in quantitative agreement with recent experimental inelastic neutron and x-ray scattering data. The analysis of the longitudinal and transverse current spectra allows to discriminate between opposite interpretations of the existing experimental data in favour of the propagating nature of the high frequency sound waves.
Diffuse scattering is a rich source of information about disorder in crystalline materials, which can be modelled using atomistic techniques such as Monte Carlo and molecular dynamics simulations. Modern X-ray and neutron scattering instruments can r apidly measure large volumes of diffuse-scattering data. Unfortunately, current algorithms for atomistic diffuse-scattering calculations are too slow to model large data sets completely, because the fast Fourier transform (FFT) algorithm has long been considered unsuitable for such calculations [Butler & Welberry, J. Appl. Cryst. 25, 391 (1992)]. Here, a new approach is presented for ultrafast calculation of atomistic diffuse-scattering patterns. It is shown that the FFT can actually be used to perform such calculations rapidly, and that a fast method based on sampling theory can be used to reduce high-frequency noise in the calculations. These algorithms are benchmarked using realistic examples of compositional, magnetic and displacive disorder. They accelerate the calculations by a factor of at least 100, making refinement of atomistic models to large diffuse-scattering volumes practical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا