ترغب بنشر مسار تعليمي؟ اضغط هنا

A light Scalar Dark Matter for CoGeNT and DAMA in D_6 Flavor Symmetric Model

235   0   0.0 ( 0 )
 نشر من قبل Hiroshi Okada
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We try to interpret a very light dark matter with mass of 5~10 GeV which is in favor of the recent experiments reported by CoGeNT and DAMA, in a non-supersymmetric extension of radiative seesaw model with a family symmetry D_6 x Z_2 x Z_2. We show that a D_6 singlet real scalar field can be a promising dark matter candidate, and it gives the elastic cross section sigma simeq 7x10^{-41} cm^2 which is required by these experiments. Our dark matter interacts with a D_6 singlet scalar Higgs boson, which couples only to quark sector. The dark matter-nucleon cross section and new decay mode h->DM DM can be large if the standard model Higgs boson h is light. The Higgs phenomenology is also discussed.



قيم البحث

اقرأ أيضاً

93 - John F. Gunion 2010
Recent data from CoGeNT and DAMA are roughly consistent with a very light dark matter particle with $msim 4-10gev$ and spin-independent cross section of order $sigma_{SI} sim (1-3)times 10^{-4}pb$. An important question is whether these observations are compatible with supersymmetric models obeying $Omega h^2sim 0.11$ without violating existing collider constraints and precision measurements. In this talk, I review the fact the the Minimal Supersymmetric Model allows insufficient flexibility to achieve such compatibility, basically because of the highly constrained nature of the MSSM Higgs sector in relation to LEP limits on Higgs bosons. I then outline the manner in which the more flexible Higgs sectors of the Next-to-Minimal Supersymmetric Model and an Extended Next-to-Minimal Supersymmetric Model allow large $sigma_{SI}$ and $Omega h^2sim 0.11$ at low LSP mass without violating LEP, Tevatron, BaBar and other experimental limits. The relationship of the required Higgs sectors to the NMSSM ideal-Higgs scenarios is discussed.
124 - John F. Gunion 2010
We assess the extent to which the NMSSM can allow for light dark matter in the $2gevlsim mcnonelsim 12gev$ mass range with correct relic density and large spin-independent direct-detection cross section, $sigsi$, in the range suggested by cogent and DAMA. For standard assumptions regarding nucleon $s$-quark content and cosmological relic density, $rho$, we find that the NMSSM falls short by a factor of about 10 to 15 (3 to 5) without (with) significant violation of the current $(g-2)_mu$ constraints.
We study a fermionic dark matter in a non-supersymmetric extension of the standard model with a family symmetry based on D6xZ2xZ2. In our model, the final state of the dark matter annihilation is determined to be e+ e- by the flavor symmetry, which i s consistent with the PAMELA result. At first, we show that our dark matter mass should be within the range of 230 GeV - 750 GeV in the WMAP analysis combined with mu to e gamma constraint. Moreover we simultaneously explain the experiments of direct and indirect detection, by simply adding a gauge and D6 singlet real scalar field. In the direct detection experiments, we show that the lighter dark matter mass ~ 230 GeV and the lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds reported by CDMS II and XENON100. In the indirect detection experiments, we explain the positron excess reported by PAMELA through the Breit-Wigner enhancement mechanism. We also show that our model is consistent with no antiproton excess suggested by PAMELA.
Left-Right symmetric model (LRSM) has been an attractive extension of the Standard Model (SM) which can address the origin of parity violation in the SM electroweak (EW) interactions, generate tiny neutrino masses, accommodate dark matter (DM) candid ates and provide a natural framework for baryogenesis through leptogenesis. In this work we utilize the minimal LRSM to study the recently reported DAMPE results of cosmic $e^+e^-$ spectrum which exhibits a tentative peak around 1.4 TeV, while satisfying the current neutrino data. We propose to explain the DAMPE peak with a complex scalar DM $chi$ in two scenarios: 1) $chichi^* to H_1^{++}H_1^{--} to ell_i^+ell_i^+ell_j^-ell_j^-$; 2) $chichi^* to H_{k}^{++}H_{k}^{--} to ell_i^+ell_i^+ell_j^-ell_j^-$ accompanied by $chichi^* to H_1^+ H_1^- to ell_i^+ u_{ell_i} ell_j^- u_{ell_j}$ with $ell_{i,j}=e,mu,tau$ and $k=1,2$. We fit the theoretical prediction on $e^+e^-$ spectrum to relevant experimental data to determine the scalar mass spectrum favored by the DAMPE excess. We also consider various constraints from theoretical principles, collider experiments as well as DM relic density and direct search experiments. We find that there are ample parameter space which can interpret the DAMPE data while passing the constraints. Our explanations, on the other hand, usually imply the existence of other new physics at the energy scale ranging from $10^7 {rm GeV}$ to $10^{11} {rm GeV}$. Collider tests of our explanations are also discussed.
We present a global study of the simplest scalar phantom dark matter model. The best fit parameters of the model are determined by simultaneously imposing (i) relic density constraint from WMAP, (ii) 225 live days data from direct experiment XENON100 , (iii) upper limit of gamma-ray flux from Fermi-LAT indirect detection based on dwarf spheroidal satellite galaxies, and (iv) the Higgs boson candidate with a mass about 125 GeV and its invisible branching ratio no larger than 40% if the decay of the Higgs boson into a pair of dark matter is kinematically allowed. The allowed parameter space is then used to predict annihilation cross sections for gamma-ray lines, event rates for three processes mono-b jet, single charged lepton and two charged leptons plus missing energies at the Large Hadron Collider, as well as to evaluate the muon anomalous magnetic dipole moment for the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا