ﻻ يوجد ملخص باللغة العربية
The fusion and evaporation residue cross sections for the $^{50}$Ti+$^{249}$Cf and $^{54}$Cr+$^{248}$Cm reactions calculated by the combined dinuclear system and advanced statistical models are compared. These reactions are considered to be used to synthesize the heaviest superheavy element. The $^{50}$Ti+$^{249}$Cf reaction is more mass asymmetric than $^{54}$Cr+$^{248}$Cm and the fusion excitation function for the former reaction is higher than the one for the latter reaction. The evaporation residue excitation functions for the mass asymmetric reaction is higher in comparison with the one of the $^{54}$Cr+$^{248}$Cm reaction. The use of the mass values of superheavy nuclei calculated in the framework of the macroscopic-microscopic model by the Warsaw group leads to smaller evaporation residue cross section for both the reactions in comparison with the case of using the masses calculated by Peter Moller {it et al}. The $^{50}$Ti+$^{249}$Cf reaction is more favorable in comparison with the $^{54}$Cr+$^{248}$Cm reaction: the maximum values of the excitation function of the 3n-channel of the evaporation residue formation for the $^{50}$Ti+$^{249}$Cf and $^{54}$Cr+$^{248}$Cm reactions are about 0.1 and 0.07 pb, respectively, but the yield of the 4n-channel for the former reaction is lower (0.004 pb) in comparison with the one (0.01 pb) for the latter reaction.
The yields of evaporation residues, fusion-fission and quasifission fragments in the $^{48}$Ca+$^{144,154}$Sm and $^{16}$O+$^{186}$W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and
The synthesis of superheavy elements stimulates the effort to study the peculiarities of the complete fusion with massive nuclei and to improve theoretical models in order to extract knowledge about reaction mechanism in heavy ion collisions at low e
Structural properties and the decay modes of the superheavy elements Z $=$ 122, 120, 118 are studied in a microscopic framework. We evaluate the binding energy, one- and two- proton and neutron separation energy, shell correction and density profile
Within the framework of the dinuclear system (DNS) model, the fusion reactions leading to the compound nuclei 274Hs and 286Cn are investigated. The fusion probability as a function of DNS excitation energy is studied. The calculated results are in go
A complete set of existing data on hot fusion reactions leading to synthesis of superheavy nuclei of Z =114-118, obtained in a series of experiments in Dubna and later in GSI Darmstadt and LBNL Berkeley, was analyzed in terms of a new angular-momentu